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IPESTRICT

This thesis gives a description of the physical and

tactical parameters pertaining to missile defense and

offense, and then proceeds with an overview of the mathemat-

ical investigations done on the missile allocation problem

up to the 1972 publication of the survey monograph on this
subject by Eckler and Burr. Finally, it presents the results

of a similar survey done by the author of later unclassified

studies on the sissile allocation prolem.
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Sx1. IIZoDUCTIOn

-. BASIC PICBUIJ DEFIIITION

In the past 35 years, a number of papers and reports,

"both classified and unclassified, have been published on the

missile allocation problem. This protlea can be stated very

simply as follows:

Given an existing weapon force and a set of targets, what
is the 'optimal' allocaticn of weapons to targets?

The problem can be anallzed from two perspectives:
* that of the defender, in which case the. probles

concerns the optimal allocation of defense missiles for
the defense of a single target or a group of targets,

or

* that of the attacker, in which case the problem

concerns the optimal allocation of weapons to attack
the targets and possibly the defense systems.

There are many elements that comprise the missile allo-

cation problem. These elements can be broadly divided into

six gEcups:

• the attacking force,

* the defending force,

* the target complex,
• intelligence available to both forces,

* scenario of the battle, and

* the criterion upon which the effectiveness of the

weapon allocation strategy is based.

Tbe specification of the parameters of these six

elements determine the complexity, nature and scope of the

particular allccation problem. The solution Is a weapon

allocation strategy that optimizes the objectives set forth

by the force seeking the allocation strategy.
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B. PURPOSE

Ihis thesis is motivated by the author's interest in

P the field of air defense and missile defense systems. Air

defense is of particular importance to a small country like

Singapore, the author's hcaeland, where vital military
installations and industrial centres are located very close
to one another geographically. It is thus especially vulner-
able to a concentrated attack of enemy aircraft that can fly
at low altitude and unmask cnly at a close proximity to the
intended targets before unlcading their ordnance. The other
motivation is that the analysis of the missile allocation

problem from a mathematical viewpoint necessitates the use
"of aaay optimization technigues, such as linear and nonli-
"near programming, stochastic dynamic programming, game
theory and Honte Carlo methods, that form the core of a
traditional Clerations Research study. is such, the missile

allocation prot)Vm is a good example of the kind of problem
"" that is amenable to analysis by Operations Research

techniques.

* C. SCOOPE &It OBGAIIZATOIC

The scope of the thesis can be delineated as follovs:

the investigations and results presented are all drawn

from the unclassified literature, due to a lack of
access to the classified papers.

.a*o detailed mathematical proofs and derivations are

given fcr most results given. However, the interested

"reader car examine tke original references for more

details.

. • emphasis is given to results obtained from enalytical

,sans rather than from computer simulation. In studies

""hich consider realistic situations, the resulting

mathematical analyses are usually so complicated that

,.-..8
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it is necessary to resort to Bonte Carlo simulation in
order to ottain numerical results. The restrictions on

computer tine usually dc not permit extensive varia-

tions in Faraneters in order to find an optimal solu-

"tion or to conduct sensitivity analyses.

* studies pertaining to specific weapon systems are not

included here, in line with the general appeal of this

subject.

'C. Chapter 2 Iresents the missile allocation problem in

terms of its components. 7erns and nomenclature pertaining

to this field of study are given as an aid to understanding.

The common notations used in later mathematical formulations

of the problem are also given.

Chapter .z gives a general overview of the Iivestigations

and results ccncerning the missile allocation problem prior

to the publication of the monograph by Eckler and Burr

[Ref. 1] on this subject. This publication can be considered

a f1an~mark as it is the first cosprehensive survey of the

literature on the missile allocation problem and a cospila-

tion cf the Lesults obtained in a more or less logical

fashion. A total of 138 references are cited therein. Hatlin

"[Ref. 2] is the only authcr prior to that monograph tc

attempt a general survey of the wissile allocation problem.

He presented a total of 40 papers and reports in abstract

form with no analytical results or mathematical derivations.

The source of the material presented in Chapter 3 is the

monograph publication, and the analytical results given form

a basis for the further results obtained in the survey by

the author of the recent (post 1972) literature on the

missile allocation problem. These results are presented in
Chapter 4, which forms the core of the thesis.

9



11. UZU ISI~L1 ALLgO&ZISM ZI~flu

A. INTRODUC7UCI

Ini this cbapter* the basic missile allocation problem is

presented in its simplified form as essentially a stochastic
duel betveen an attacker and a defender, each possessing a

stockpile of missiles. The defender defends a single target

or a Iroup of targets with surface-to-air (SAN) missiles and

the attacker uses tactical missiles that may be aimed at the
targetse or at the SAN syst'qusv with the basic objective of

destraying as many of the targets as possible. The basic

missile allocation problem is the determination of an

optimal defensive and/or an optimal offensive strategy that

can be described by the nuster and type of missiles to be
allocated to each tarqet at groups of targets# and the

firing policy for these missiles so as to minimize (for the
def enler) or maximize (for the attacker) the destruction Cf
the tar~gets.

The richaess and complexity of the missile allocation
problem is a consequence of the multitude of factors that
tear an this Ftoblem, and the influence their parameters
4ave on the determiuation of the allocation strategy. These

factors can te broadly categorized into 6 parts:
* attacker charac-teristics,
* defender characteristicat
* target characteristics9

9 intelligence available cc the oplosing force,
* sctaario, and
* aeasilre Of effectivSeess Of the allocation StLdtegy.
The specifications of amd assumptions made for each of

these elesec*.s in a particular study into the Aissile

10



allocation problem will determine the aegree of complexity
and realiss of the situatice it portrays, and ultimately,
the optimal allocation strategy that is sought.

B. ELENENTS OP TEE NISSILI LOCATICS PROBLUN

1. AttAckel

The attacking force, which is assumed to be long-
range tactical missiles in mcst of the literature related to

this subject, can be specified by three main characteris-

tics:

* weapon tyles,

* weapon capabilities, and

e attack -strategy.
Each of these characteristics is elaborated on in the

fcllcuing three subsections.

a. VeaFon Types

The attacking force can te composed of just a
single type cf weapon or a rumher of different weapon types.
a single vealon type means that each individual missile has
the same physical and performance characteristics such as
size, veight, range, accuracy, radar signature, payload and
yield, reliability and availability, and will be treated as
identical entities in the analysis. The attAcking force can
also comprise of a mix cf different weapon types with
different payloads, targeting accuracies, yields, etc.# or a
mix of real missiles and decoys, which are 'dummy' missiles
used to deceive the defense and derive benefit through the
exhaustion eifect or the saturation effect. The decoy is
just aa ezam;le of a penetration aid for the actual veapons
that are aimed at the tatgets. These penetration aids
facilitate the penetration of the main Yeapons through the
defensive systems to the intended targets. Other penetration

11



aids include weapons targeted at the defense systems, chaff,

precursor, amd ICfl.

b. Weapon capabilities

TIhe ability of the attacking weapon to destroy a
target that it is aimed at depends on its performance char-

acteristics viz.:

* maximum range of the weapon,
* aiming accuracy of the weapon,
* availability of the weapon for launch,
* reliability of the weapon- whether it can reach its

target without degradation in payload or accuracy,
-- eliverable payload cf the weapon- the number of

warheads that the delivery platform can carry,
y yield of the weapon- destruction capability of the
warheads, and

- survivatility of the weapon- can be affected by such
factors as its radar signature, flight profile, or

speed.

In many analytical studies, these individual
factors are lumped together into parameters that reflect
their combined effects, e.g. the availability, reliability
and accuracy of a weapon may be expressed as a single quan-
tity called protability of reaching the target that it is

V aimed at, while the payload and yield of the weapon may be

combined together with the hardness of the target into a

single parameter called the radius of effectiveness of the
weapon. There 'convoluted' quantities may simplify subseq-
uent nathe~iatical analyses considerably, but they should be
used with cauticn for two reasons:

- they are not physical quantities that are directly

,easureatle, and to obtain numerical values for them in
specific cases may invclve tedious experimentation and

gathering of data.

12
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. the way that the physically unequal componental factors
are combined into a single quantity may also be subject
to debate as to their relative weights.

C. Attack Strategy

The attack strategy can be seen in terms of
three dichotcaies. The first is concerned with whether a
single simultaneous attack cf all, weapons is utilized or
whether the attack is sequenced in several waves, which may
be equally or unegually spaced in tise. The successive wave
attack is normally accompanied by assessments of the attack.
The attacker may observe the impact points of his weapons
and aijust the aim-points of subsequent weapons accordingly
to coipensate for aiming erzcrs or dispersion effects. He
may alsc perform a damage assessment at the end of each
"wave, and .,in his weapons only at surviving targets in
subseguent 4ttcks. The former assessment is termed a
'shoot-adjust--shoot' strategy, while the latter is termed a

*. 'shoot-look-shoot' strategy.

The second dichotomy is whether the attacker
fires at all available targets or just a subset of the
target group. Different targets may have different values,
and may have associated with each a different kill prob-
ability depending on characteristics of the target such as

",? its hardness, location, existence and type of terminal air
"defenses, etc. If the objective of the attacker is to

S�maximize target value destrcled with a limited stockpile cf
'.• weapons, he may consider firing at only that subset of

targets which have the highest values and kill
-robabilities.

Another consideration for the attacker is the
allocation of his weapons to targets and defense systems,
which say inclule defense radars, command-and-contiol

cen tres or missile silos. the attacker may choose to fire

13



part of his veapons at the defense systems in an effort to

destroy them and thus increase the probability of subseguent

weapons penetrating the defenses and reaching their targets.
The optimal allocation of waapons to value targets and
defense system targets under different assuaptions and

-. conditions comprise one class of the missile allocation
problem.

For an attacker who is concerned with maximizing
target destruction at miniaux economic cost, a possible
attack strategy is to use a mixture of real missiles and
cheaper decoys, or to substitute better (in teras of

Ecrforaance) but ao-,-e expensive missiles with a numerically
greater forc. cf cheaper sissiles of relatively inferior
performance. By using this strategy, The attacker hops .to
bring into play two effects that degrade the capability cf
thc dafense t¢ counter the attack. These two effects are:

eibaustion effect: by firing a larger number of weapons
against a fixed stockpile of defensive aissiles, the
attacker tempts the defender to use up all of his

V., missiles, i.e. to exhaust his stockpile before the

attacker exhausts his supply of weapons. At that point,
the targets become undefended and would be mcre

vulnerakle.
• saturation effect: a defense system is said to be in a

state of saturation if the number of attacking weapons

arriving simultaneously within its coverage envelope is
greater than the number which it is capable of
engaging. Thus the defense has to select a limited
number of of attackers to engage while the rest of the

intruders are allowed to penetrate the defense unhin-

djered (leakage). By having a numerically larger force
of weapons, the attacker hopes to induca this conditior

during his attack on tic targets.

S14
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4

_• 2. DRe_•_I_dL.U Characterlstic

The defending force, assuzed to be surface-to-air
(SAN) Missile systems in general, can be specified in terms
of two major characteristics:

* missile tyves and capabilities, and
* detense strategy.

Each 3f these characteristics is elaborated on in the next
two sutsecticns.

a. missile Types and Capabilities

The defending fcrce may be comprised of just a
single type of defense missile or of different types of
missiles of different ranges, coverages and reliabilities.
Here, reliati'ity of a missile means the probability of
destroliLg an attacking veaicn it is assigned to, aud takes
into account suca parameters as the probability of
successf 1l launch, probAbility of ruccessful intercept, and
probability of k1.•l given intercept, which depend on missile
pe' eforzance specifications. Many defense studies postulate
the availability of two types of delense missiles of
substantially diflerent coverages:

* a local missile, -hich can defend against weapons
lirecte 4 t a single tazget *ervinal defense), and

* an area missile, which has a bigger coverage and cen
defend against veapons directed against one of a grouf
of targets in an exteaded region (ar~at defeus3).

D. Defense Strategy

The appropriate (or optisal) defense strate~l
depends greatly on what the defender knows about the
offense's Flanc, capabilities and r..sources. Given the
extent of intelligence about the attacker, and the resources
he possesses, the defensive strat.gy can be dichotomized in
several ways.

•'•- 15
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The first dichotomy is preallocation strategy

vs. non-preallocation strategy. In the former case, a speci-

fled. number of missiles is assigned to the defense of each
target, depending on its value. Preallocation defenses
require that the defense keep track of exactly how many
attacking weapons have been directed at each target in order

to decide whether or not to allocate a missile against the

"next weapon approaching the target. When this is mot
possible, a non-preallocation strategy (or group preferen-
tial strategy) may nonetheless be ;ossible, wherein the

target group is divided into disjoint subsets, and a frac-
tion of the defense stockpile is allocated to each of the

target subsets.

The second dichotomy concerns the allocation
between local (terminal) and area missiles. Each target can

"be defended by a mix of local missiles which are allocated

-. to it prior to the attack, amd area missiles which can cover
any target within some regicn of protection. The defense

strategy in this case is concerned with the relative numbers

of each type to be allocated to the target and the firing

policy.

The third dichotomy is concerned with whether

the defensive strategy is target-oriented or attacker-

oriented. In the former case, the defender allocates

missiles to specific targets. In some cases, the defender
say not be able to determine which target a weapon is

directed against in time to make an intercept if desired
(attack evaluation). In such a situation, the defender must
"use an attacker-oriented strategy instead, whereby missiles

are assigned tc each incoming weapon.

The target can be characterized by:

type of target,

16
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e value assigned to the target, and

. defenses associated with the target.

a. Type of Target

A simplifying assumption made in most analyses
of the missile allocation ptcblem is that targets are either
classified as point targets or area targets. A target is
considered a joint target if the lethal radius of the
attacking veapon is large enough relative to the size of the
target so that a single weapon can destroy the target
entirely. If more than one weapon is required to cover the

target, it is considered an area target. Examples of area

targets are a large airbase, a city, or a harbour. However,

an area target sight be ccnsidered to be a collection of

point targets if it can be troken down into individual aim-
points with values azsociated with each point rather than

with the target as a whole.
A target is ccnsidered to be independent of

other targets if no single attacking weapon can destroy more
than one target at a time, whereas collateral targets can be
killed by a single weapon.

b. lalue of a Target

The value of a target is an important considera-
tion in the missile allocation problem because the usual
objective or measure of effectiveness used in the compari-
sion of alternative allocation strategies is the expected

target value deetroyed. In most cases, it is assumed that
the value or military worth associated with a target is the

same as perceived by the offense as for the defense,
* although in reality it probably is not. Again in most anal-

yses, a single parameter is used to determine the value ot

the target, e.g. the population of a city target, although

in reality, several factors may be of important strategic

17



value, e.g. the industrial capacity and military installa-
tions, in addition to the polulation.

The value of a target may be constant with time,
e.g. an ammunition production plant, or it may vary with
time, e.g. an airbase from which aircraft are taking off, or
a city whose population is being rapidly evacuated. The
value scales are usually assumed to be linear, implying for
example that a city with two millicn people is twice as
valuable as a city with one million people, all other things
being egual, an assumption tIat is generally inappropriate.

A target may have an indirect value in the sense
that no value is assigned for destroying it, but if it is
eliminated, it tecomes easier to accumulate direct values
"from other targets. Indirect valued targets are sonetimes
called secondary targets, whereas direct valued targets are
called primary or value targets. Examples of secondary
targets are defensive missile silos, air defense radars, and
ccamand-and-ccntrcl centers.

c. Defenses Associated with the Target

A target may either have no defenses at all, or
terminal defenses only, area defenses only, or a aixture of
both tyTes of defenses. In models which treat the defenses
implicitly, the da•fensive ca~ability of a target is given by
that target's penetration probability (or protabilities for
coabined area and terminal defenses). Where a number of
separate defense regions are considered, a region consisting
of a subset of targets defended by a single area defense,
the defenses in one area cannot be used in another area, and
probabilities of penetrating each region are specified sepa-
rately. Defense regions may overlap to some extent so that

, some targets are contained in more than one defense region.

18



The kncwledge that each side has regarding the
opposing force, its size, cajabilities and intentions deter-
mines to a large extent the optimal strategy to employ

. against this force. In all studies on the missile allocation
probltm, assumptions are made as to the extent of informa-
tion the attacker and defender has on Pach other's stockpile
size and weapon composition, allocation srategies, and the
results of such strategies. Specifically, the intelligence
that each side has of its opponent can be delineated as
follous:.

* the total numbers and types of weapons that the oppo-
nevt possesses, or if the exact numbers are not known,
the prokability distribution of the force size;

* the reliatilities of the missiles, given generally as
the probability that a defensive missile will intercept
and destroy an attacking weapon, or the probability
that an attacking weajon will reach and destroy an
undefended point target;

• the impact points or probability distribution of impact
points of the attacking weapons, and their lethal

radii, and
* target damage evaluaticn, if the attack occurs in

successive waves i.e. determine which targets have
already been destroyed and allocate missiles or weapons
3nly to surviving ones (shoot-look-shoot strategies).

The most complete intelligence is obtained when one
side cam see tke entire allocation of the opposing force's
stockpile to targets before making its own allocation, i.e.
the opposing force's strategy (allocation and firing policy)

is known beforehand. If the offense has this knowledge, an
offense-last-move situation exists, and similiarly, if the
defense possesses this intelligence, a defense-last-move

19



situaticn is present. On the other end of the scaleethe
offense and defense may allocate their resources each in
ignorance of the otherls allocations. This allocation
problem can in general be formulated as a two-person-zero-

sun game.

5. Scen"I_

A majcr portion of the studies on the missile allo-

catiox problem have been devoted to strategic weapons
exchanges between two superpowers. Since strategic nuclear
warfare remains outside the reals of military experience,
models are proposed and analyzed to provide decision makers
with inforzaticn on possible consequences of policy deci-
sions on the deployment and employment of strategic nuclear
weapons.

The scenario usually considered is based on the
precept of mutual deterence, i.e. the threat of massive
nuclear retaliation to deter aggression. To achieve this,
each side maintains a massive and secure strategic force
that is expected to retain its capability of delivering a
devastating retaliatory strike despite an all-out enemy
first strike intended to reduce the retaliatory force
(assured destruction policy).

Most studies assume a two-strike nuclear exchange#

in vhich each side possesses two kinds of assets:
Sseveral types of strategic weapons with which each side

can strike at the other* e.g. land-based ICBD's,
subaarine-based SLBM's, or long-range nuclear bombers,
and

Svalue assets, consiating of industrial, economic ad
jovernmental facilities and population that contribute

. to a society's economic viability. By attacking these

targets, each side aims to destroy the other as a
social and econoaic entity.
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The first striker can allocate his strategic weapons

against his o;onentss strategic arsenal in a -,ounterforce

attack. in order to reduce tke expected retaliatory damage to

himself, or he say target his opponent's value targets,,

thereby fulfilling the gcal of damaging his "icozoxic

viability in a countervalue attack, or he could mix counter-

force and countervalue ctions to obtain an optimal

targeting strategy based on some objective function. Because
a two-strike exchange is assumed, there will be u further
strikes after the other side retaliates. Therefore the first
striker allocates all his weapons in a first strike, and his
opponent retaliates with all his veapans against value
targets only.

This tasic scenario can be enriched by considering
reserve forces, or more than two sequential strikes.
Selective threat targeting and progressive confrontation
targeting may also be considered as alternative scenarios of
the real world situation.

6. measures of Effectiveness 2&~ Il Alloc~iUo Strategya

The criterion of effectiveness used to cospare

alternative strategies or to find an 'optisal' strategy in a
given situation is determined by the decision maker faced
with the prctlem. The choice of an appropriate measure of
effectiveness (NOR) is determined largely by the physical
parameters of the problem, such as relative stockpile sizes,

aature of tht targets, degree of knowledge about the oppo-

nent's veapons and allocaticz strategy, as well as political
objectives and subjective jerceptions. Such a choice may
depeni largely on intuition, and hence be somewhat arbi-

trary. In many studies, a ;articular 110 is chosen for its

mathematical tractability rather than its closeness to real
political objectives.
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The NOE's normally used in missile allocation prob-
"less are:

* probability of target destruction- this ROB is appro-
priate if the target ccnsists of a single point;

e expected target value destroyed- this MOE is suitable
if the target is an area target or a composition of
many point targets, and both sides know the size of the
opponent's stockpile;

* expected number of attacking weapons not intercepted by
the defense- this MOB is used because the expected
target value destroyed is directly related to the

number cf penetrating weapons;

* expected target value surviving a certain percentage of
all attacks of a given size- in some instances, this
ICE is used. It is more difficult to deal with analyt-
ically; however it is easily evaluated using donte
Carlo metbcds;

. probability that no target value is destroyed- this 1O0
"is appropriate if the number of defensive missiles
available to a target is greater than the number of
attackixg weapons directed at the target, and the
aature of the target is such that even a relatively
small amount of damage inflicted would be as cata-
strophic as a large asucnt of damage;

* expected cost of achieving destruction of the target-

this NOE is used in a situation where the offense is
act restricted to a numeer of attack waves, but could
continue with the attacks until the target is

Jestroyed. This attack strategy is used in the case

where the cperational value or worth of the target is

very high and the number of weapons that the attacker
can expend on its destruction is practically unlimited;

"* expected cumber of weapons expended until the first
penetrator- this HOE is suitable if the attacker fires
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one weapon at a time against the target and the defense

has no information about the size of the offense stock-

pile. In this situaticn, it is not possible for the

defense to design a strategy which minimizes the

expected fraction of targets destroyed or to maximize

the prokability that no target value is destroyed.

expected target value extracted per offensive weapon

fired- this NOR is apprcpriate if the defense designs a

strategy such that the expected fraction of targets

lestrojed is proportional to the attack size. These are

also kncwn as 'Prim Read' deployments.

The selection of an appropriate NOR is important in

the missile allocation problem because the optimal alloca-

tion strategy in most cases depends critically on this

choice. In some situations however, different criteria of

effectiveness lead to the same allocation strategy or lead

to similiar results.

C. TRINISOULCGIND 1NOTITIG

The ternminclogy and notation used throughout this thesis

will be consistent in the *cst part with those used in the

monograph of Eckler and Burr. This will provide a sense of

continuity in going from Chakter 3, in which an overview of

the pre-1972 investigations into the missile allocation

problem is presented, with material largely extracted from

Eckler and Burr's publication, to Chapter 4, which gives the

results of studies done subsequent to the publication of the

mon og raph.

Rost of the terminology related to the missile alloca-

tion problem has been articulated and explained in the

previous sections of this chapter, when the elements of the

missile allocation problem ize descriked. Nevertheless, it

is worthwhile tc summarize the salient terms here to avoid

any confusion.

23



I1 a typical situation, the offense has a stockpile o1!

weapons which are used to attack a target or target13

belonging to the defense. The defense has a stockpile of

missiles which can be used to intercept the attacking

weapons. The targets say be either joint targets, any of

which can be destroyed by a single weapon, or area targets,

which require several weapons to destroy. A missile has an

inherent reliability or prokability that it will Aestroy the

weapon it is assigned to. A weapon in turn has a weapon kill

probability, which is the pzobability that it will destroy

the target it is aimed at if it is not intercepted by a

defense missile. The value cf a target is the military worth

assigned to it and is assumed to be the sane from both the

offense's and the defense's point of view. The attack can

occur simultanecusly in a salvo, or it can occur in several

successive waves separated in time. Sequential uttacks on a

"target makes jossible damage assessment and leads to shoot-

look-shoot strategies.

The most common symbols used in the analyses presented

later are given below. Other notation peculiar to a partic-

ular analysis will be given as required.

I = total number of weapons in the offense stockpile,

D = total number of missiles in the defense stockpile,

T a total number of targets,

a = A/T a normalized offense stockpile on a per target

basis,
d = D/T * normalized defense stockpile on a per target

basis,

j= weapon kill probability,

f= missile reliatility,
I= I-p a probakility an unintercepted weapon falls to kill

its target,
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g,= 1-p(1-1) = probability that a veapon to vbich a aissile

has been assigned fails to destroy its

target,

"1. v;= value of the ith target,
"'9 E = latbal radius of a veapcr,

E(X) = expected value of quamtity I,
[x] = greatest integer less than or egual to x, and
Pr(X) = probability of event I occuring.

'-2
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III. IRA-1,U2 INES1GAT3SICI~ =2Z InI USIL fILLOA1LTION

A. IM¶RODUC7IOI

la this chapter, an overview of the investigations into
the missile allocation problem from the unclassified litera-
ture prior to the 1972 survey monograph by Eckler and Burr
is given. She order of presentation follows that of this
monograph; however only a summary of the major results of

interest are given, since this is ailed at giving a general
idea of the state of research on the missile allocation

I problem up to 1972 rather than a lengthy exposition of all

these studies. No references to the original publications
are given for the results quoted, F .nce the monograph by
Eckler and Burr provides a comprehensive list of the orig-
inal papers in its bibliography.

The purpose of this chapter is to give an overview of
the state of research into the missile allocation problem up

to 1972, so that the results of subsequent analyses
presented in chapter 4 could be better appreciated and the
development of certain key ideas and applications could be
more easily traced. The key resulta are organized in the

foll,.ing marner:
* lefense strategies for a single point target*
o offense and defense strategies for a group of identical

"* ~point tarsets,

* offense and defense strategies for a group of non-
identical targets with different values, and
offense and defense strategies in special situations.

E•ach of these classes cf problems will be addressed in
the following sections.
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B. DIllNSE STRITEGIES FOR A SINGLE PCIUT TARGET

In this section, the defense of a single point target or

a single area target with uniform value against a single
salvo of wealcns or sequential waves of weapons are consid-
ered. The HOE in the case of a single target is
Pr(the target survives), and in the case of an area target
is E(number cf penetrators).

The standard defense problem assumes that the damage
function is a 'cookie-cutter' function in the case of a
"point target, i.e. a weapon destroys the target if and only
if it lands within a distance B of the target, R being its
lethal radius. It is also assumed that individual missiles
and weapons cperate independently of each other.

If the defense knows the lethal radius and also that a
weapons out of a salvo of A weapons will land within
distance R before making his allocation, the optimal defense

"V' strategy is to salvo his D missiles as uniformly as possible

against each of the a weapons, and the probability of target
destrt¢ction is

•_,•. ~P, = 1-[1-(II-')k)" { - l-l•}

where k = [D/1] and r is the remainder when D is divided
by a, i.e. D = ka + r . P can be approximated by permit-

ting non-integer allocaticns of missiles to each weapon:
P4P

S., P € 1 - 11-(1-f)*,]•

The approximation will, in all cases, be at most as large

as the actual value.
The unconditional probability of target destruction is

where p Pr (a weapon lands within distance' R of the
target).
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Various modifications tc this standard defense problem

can be considered viz.

* defense does not know lethal radius R in a salvo

attack,

J defense does not know attack size A in a sequential

attack,

lefense does not kncv lethal radius R in a sequential

attack,

* lefense kncvs that the sequential attack contains one

weapon mixed with decoys, and

*lefense can do damage assessment on attacking weapons.

The follcwing subsecticns descrike each of these five

cases in turn.

1. Defense Staege jj Rdius J& Un

It is assumed that tce defense knows the attack size

a and the inpact points rj of each of these a weapons prior
to allocation of his missiles. However the lethal radius R

of the weapcns is mot known. In appropriate ROB to use is to

maximize E (distance of the target to the impact point of the

"nearest penetrator) = B.

The protability that the itb closest weapon will penetrate

is

•'. a• = (1-5')''

where at = no. cf missiles allocated to the ith weapon.
;-Then a r, As +raAA, (lAl )+. r; AkjlT (-AL)+jfIA

if the nearest j weapons are assigned missile*. To find the

optimum allocations m* dynamic programming could be used

to maximize I such that

7A = ,1y

whe.e a = at

28
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An approximate solution can te derived by allowing
the unknowns to be continuous, and differentiating E with
respect to a;. in this case a set of recursive equations is
obtained:

-- • : .Lk : P,,( 1-a*•)

_ :. Q• = O,, 1-Z•,)+r,* -rx,,

=P•/Q, for k = j-2,j-3,.o.,1 #
where Pr = rj#-rj, Q, = rJ.-r1, A•I' P./Q 1 .

7his recurrence enables one to get successively . ,A*.
0*-*,A-*. Themn

Aý= log A../log (1-f?

2. Strtegies tU _q S gnjJ Attack 21 &Lfl2n I
It is assumed here that the weapons arrive one at a

time and the defense knows the lethal radius a of the weapon
but not the site of the attack. The objective of the defense
is tc maximize 9(number of veapons to the 1st penetrator).

--- This problem is very. neazly identical to that of the
preceling subsection, and one can siziliarly derive an
approximate solution by means of a set of recursive
"formulae. A very nearly optimal defense strategy can be

stated simply as follows:
For a stockpile of D missiles, allocate approximately D/b
of tbea to the 1st h weafons, and none to the (h+l)th

weapst.
"Numerical calculations indicate that the choice of h for
this near optimal defense strategy is about 90% of the first
unengaged wea;on under the optimal allocation. The loss in
the exiected number to the 1st penetrator is only about 61
compared with the continuous optisue.
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An exact procedure which provides integer alloca-

tions can be derived directly if it is assumed that D is not

too large* or that no more than 2 missiles say be assigned
to each weapon. By comparing the M01 if 1 missile is

assigned to each of the first (&+l) weapons to the BOB if 2
missiles are allocated to the first weapon and 1 missile to
each of the next (s-1) weapcns, the following defense allo-

cation strategy is derived; let

me = (-log(1-.-p+pf))/(log g9) + 2

where p = weafon kill probability, and

q, = 1-p(1-Y)

Then if D S vo , assign 1 missile each to the first
D weapons, and if D > in., assign 2 missiles each to the
first (D-a.*+1)2 weapons and 1 missile each to the next
(D+a.- I)/2 weapcns.

Using the sane methodology, one could also derive a
procedure to ottain the optimal defense allocation strategy
given that no sore than 3 missiles may be assigned to each
weapon. However, no soluticn has been given which permits
sore than 3 missiles to be assigned to a weapon; it is then

neccessary to resort to d~saaic programming to ebtain a
solution.

An alternative defense strategy can be obtained if,
instead of maxisizing R(numker of weapons to the 1st pnse-
trator), the defenme chooses to make Pr(target destruction)
proportional to the attack size up to the point of missile

exhaustion. In this case, the marginal increase in the

target destruction probability achieved by allocating I more
weapon tU the target is constant. This doctrine of 'constant
value decrement' yields the following near optimum alloca-
tion strategy:

m.=-logi(1-i~n) p)/log(1-') , i a ,.,
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where a; is the number of missiles assigned to the ith
weapon* and a is the number of weapons needed to exhaust the

missileo stockpile.
If the defense knows the probability distribution of

the attack size, and its objective is to minimize E =

E(numker of penetrators), then

SEI

where pt = Pr (offense will attack with i or more weapons

inside the lethal radius). p; nay be assumed to be either
binomial or gecmetric. The reduction in I resulting from

adding the Jth sissile to the ith weapon is

R (i,j) =i .(lY)3

To obtain the optimum allocation, the missiles are assigned

one at a tile tc that weapcn which gives the greatest value

of R(i, J).

3. ~Jt~tjI gais I Sequential Atac g Unknown

it is assumed here that the attack occurs in waves

of one veapan at a time. 7he defense does not know the

lethal radius of the weapons, but knows the attack size and
can predict the ispact point of each weapon relAtive to the
target. Tvc simplifying eztreme cases can be considered,

according to whether the defense has no knowledge or
complete knowledge of the impact point distribution. Two

dOg's are possikie:

11 OB U: sax. Pr(the offensive weapon landing nearest the
target Is assigned a missile), or

* * ICE 2: sax E(total sccre of weapons destroyed), where

score cf a weapon is the probability that a random
weapon vill land further from the target than it did.
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In the case where the impact point distribution is

unknovn# and 1O0 1 is used, the optimum defense Etrategy is

as follows:

observe the smallest miss-distance in a frac-

tion at, i = 1,...,D of the attack, and assign a missile to

the 1st weapcn appearing with a smaller miss-distance.

This observation is done L times, where D is the total

number of missiles available. The optimum fractions e(i have

* been computed and are tabulated. in alternative near optimum
strategy for large attack sizes which is simpler to compute

is as follows:

observe the smallest miss-distance in a fraction

cc = exp -(r I)- I of the attack and assign a missiles to

the 1st a weapons whose miss-distances are smaller.

If the impact point distribution is known, a near

optimal defense strategy f c large attack sizes A can be
given as follows:

observe the miss-distance x of the ith weapon and assign
a missile tc it if rLS r*, where r* = k/A =L'pcr)dr.

"Optimum values of k for different values of D have been

determined.
In the case where the impact point distribution is

known and MOE 2 is used, the optimum defense strategy has
the following fcrm.

Suppose there are t S D missiles remaining, and
k 5 1 weapcns yet appear in the attack. Vhen the first of

the k weapons appears with miss-distance r, allocate a

A-- missile if z S r(ket), where r(kt) is defined implicitly

by:

*1• U(kt) -J p(r)dr

If E(kt) is the average value of the t probabilities that a

random weapcn exceeds the cbserved miss-distances of the
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weapons destroyed by the final t missiles,

R(total score of the t weapcns) is given by the iterative
eguatiom:

tE(kt) = [1+U(kt)) (O.5[1+O(kt))+(t-1)E(k-lt-1)}

+U(kt)tZ(k-i,t)

This yields:

tI*(k,t)+(t-1)I*(k-1,t-1)= tE*(k-l,t)

* and the optimum values B*lkt) and U*(k,t) can be found
recursively using the initial conditions U*(k,k) = 0,
E*(kk) = 0.5 # 1 < k S a.

witb R22c0!S

The assumptions made are the defense knows that the

sequential attack of size A contains one weapon mixed with
(A-1) decoys, and the missile reliatility Y< 1 while the

weapon kill prolability p = 1. In this situation, an appro-
priate BOB for the defense would be to minimize the prob-
ability that a weapon is nct intercepted. The weapon is
characterized by a single ckservation (real number) drawn
from a probability distribution with pdf fw(x), and the
decoy is also characterized by an observation drawn from a
pdf fj (x), bcth of which are known to the defense.

The optimum strategy can be specified as follows:
Suppose there are t S D missiles remaining, and k S A
attacking objects yet to appear. Uhen the first of the
objects appear, note the value c of its observation, and
allocate i missiles to it if ci S c S c;,, .

Optimal values of ct, I = 1,...t*1 can be derived from the
analytical expression of Fr(the weapon penetrates) a p,
which is a ccmplicated function of the c; values. Tabulated

values of p associated with optimum c& values are available

33

N p N "N



for fw (z) and fj (x) being Normal distributions with unit

variance.

A aore general model with more than one weapon among
the A attacking objects has been postulated. The optimal

strategies for two different criteria of effectiveness viz.
sin. Pr(1 or more weapons penetrate) and sin. B (sumber of

veapons penetrating) have been determined, for fw(z) being a
Normal density function with unit mean and variance and
fj(x) being a Normal density function with zero mean and

unit variance.

5. Def _ Strate iesJj jJU j. Jag Assessment

When the defense is able to perform damage assess-
ment on the attacking weapons, he can use a k-stage shoot-

look-strategy, whereby a. missiles are allocated to A weapons
in the first stage, then an missiles are allocated tc

A-a, surviving weapons in the second stage after observing
* which m, weajons have been destroyed in the first stage, and

so on, and finally D-(&,÷a *...÷ak.i ) missiles are allocated
to the A-(no 4ni+.oo4na-. ) surviving weapons. The BOB used in
this case is aax. Pr(no vea;cns survive).

An algorithm for determining the optimal shoot-look-
shoot strategy for any number of stages can be devised by

using a set cf recursive equations, whereby the optimum
k-stage strategy is determined from the (k-1), (k-2) #...,

1st stage strategies.

For a 2-stage shoot-look-shoot strategy with A = 2,
the optimal allocation is D/2 missiles to the 1st stage and

,X D/2 missiles to the 2nd stage; in both cases, the missiles

are assigned uniformly to all weapons. When A = 3 or move,

analytical results are difficult to obtain, and a computer

must be used to ottain the optimus allocation for each a and

D.
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For a D-stage shoot-look-shoot strategy, a missile
is assigned at each stage, and in this situation,
Pr(no weapons survive) is

S~~P = L •) 0_Y))-,f
""p LA

For high values of 9, providing a single 'look' in a
2-stage shoct-look-shoot strategy is quite worthwhile in
terms of the gain in Pr(no weapons survive) over a 1-stage
strategy (no damage assessuert), but providing more than one
look is much less so unless the missile reliability is
low.

A special consideration for k-stage shoot-look-shoot
strategies is when a single missile is allocated to each
weapon and time is limited. This gives rise to what is
known as a fire-power limited shoot-look-shoot defense. If

-r. T is the time interval between the 1st possible assignment
* '- of a missile to a weapon and the destruction of the target

by thit weapcn, and T is the time required for a missile to
attack the weapou and evaluate the outcome, then a k-stage
shoot-lcok-shoot strategy can be used against each weapon,
where k = [T/.t]. It is assumed that the offense attacks with
A weapons arriving at equalll spaced intervals of length sT.
Four cases can le considered depending on the value of s.

When s 1 k, the successive weapon engagements are
independent of each other, and the probability that a weapon
will destroy the target is

p 0- (!-) )k)A

Vhen s < k, succezzive weapon engagements are not
independent of each other and delays in engagements of
successive veapcns can occur. The evaluation of P is
consequently much more involved, and it becomes neccessary

to use a comnuter to evaluate P.
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weapon arrivals is equal to the time required to engage a

weapon with a missile, and P can be given by the cumulative

negative bincsial distribution
A-1 k k-LL

P -z ) .- )
In the previous analyses, it was assumed that the

arrival times of weapons are equally spaced. In an attempt

to be sore realistic, it is sometimes assumed that the

arrival times consist of order statistics obtained from a

Ncrmal or an Exponential distribution. In these cases, it

nay occur that certain weapons cannot be engaged at the time

of their arrival because the defense is still occupied with

earlier weapcns, if the arrival time of a weapon is less
t1an the tine I required for a missile to engege a weapon.
The probability of no delay of the weapons can be given, in
the case where A = 2, y = 1, and the arrival time distribu-
tion is a Normal distributicn with standard deviation , as

so I -t-T) 4
S- 0•

For values of A greater than 2, it is necessary to
resort to Monte Carlo simulation to oatain the values of the
maxisum delal times.

If the weapon arrival times are assumed to be expo-
nentitl with paraneter a, the probability of no delay can be
given in closed fern as

a4 a (A-i) tezp(-aTA(A-1)/2)

a more general result assumes that T is not

"constant, but a random ratriable from a Gamsa distribution

with parameters n,?. In this case, the probability of no

delay is
A-I1 - f

711 (Iia/A)
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"C. STRATBGIUS POD A GROUP CT IDENTXCIC TARGETS

In the previous sections, optimum defense strategies

were presented in the case cf a single point target. In

contrast this section considers offense and defense strat-

egies for a grcup of independent identical point targets

with identical values under different degrees of knowledge

each side has of the other's stockpile size and allocations

to individual targets.

The offense and defense strategies that are considered

here are organized in the fclloving manner:

* preallocation strategies- offense-last-move

- defense-last-move

"- neither side knows the

other's allocation

* ncn-preallocation strategies- varying attack size

- fixed attack size

"" mixed ncn-freallocatior and preallocation strategies

"* •aaage assessment strategies- defense damage assessment
- offense damage assessment

* attacker-oriented strategies- neither side knows the
other's allocation

- offense knows defense

allocation

Each of these topics will be dealt with in the following
subsections.

1. n",1Uqcato fitra&tg9J&§

Strategies allocating weapons and missiles to indi-

"vidual targets rather than to subgroups of targets are

callei preallocation strategies, and are based on the

assumption that attack evaluation by the defense is

possible. Iwo advantanes cf preallccation strategies are

that they represent effectively computable exact solutions
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of fairly realistic problems, and that they are sore effec-

"tive for the defense than cther strategies if the offense

outnumbers the defense and missile reliability is not very

high.
It is generally assumed here that missile engage-

ments are ore-on-one, and that both sides know the other's

stockpile size and weapon kill probability p and missile

reliability f . 7he MOE is E(fraction of targets saved), and

can be given by

E (f) =P

where PI is Pr(the ith target survives), and T is the total

number of targets.

a. Cffense-Last-Hove

The offense-last-move situation represents a

" lover bound for E(fractiom of targets saved),, since it

Simplies that the offense can see the entire defense alloca-
tion of missiles to individual targets before making his own
allocation. In this case, the best possible defense

strategy is to allocate an equal number of missiles to each

target.

-be optimum offense strategy against this

defense can ke derived as fcllovs: let the offense attack a

fraction of the targets yk a a/k vith k weapons per target,

"k a a. If E(k) is the Erobability that the target is

destroyed if attacked by k weapons and defended by d

missiles, then E(fraction of targets saved) R(f) = 1-ykPlk)
Assauing that P k) is a function for which a unique value of

k, aenoted k* maximizes P(k)/k (the average return per

veapoo at an attacked target), the offense allocation that

maximizes P(k)/k also minimizes 8(f) if k* > a. Hence

E(f) 1 - (af(k*))/k* if 0 < a S ks, and

E(f)= 1 - 1(a) if k* : a
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For the one-on-one defense that is assumed,

P (k) - g1 (deI.

b. Lefense-Last-Rove

7be defense-last-move situation represents an

upper bound for the expected fraction of targets saved,

since it imllies that the defense can see the entire offense

allocation of weapons to targets before making his ova allo-

cation of missiles. The best possible offense strategy in

this case is to allocate an equal number of veapons to each

target. For the defense, if d a a, the maximizing defense

strategy is to attack each weapon with a single missile

(since engagements are assumed to be one-on-one only). If

d < a, the optinal defense strategy is assign I missile each

to a fracticn d/a of the targets, and no missiles to the

rest. 7he corresponding value of E(f) is

E(f) a (a-d)g/a * dgql/a

c. Neither Side Kncs the Other's Allocation

In the situation where neither side knows the

* other's allocation to targets, the problem can be formulated

in terms of a tvo-person-zero-sum gane, with the payoff

being the fraction of targets saved. I generalization of the

fundasental theorem of games states that there exists

optimum pdf's of offense and defense strategies, and the

gaze has a value V given by a-i sin I(f). vhere j and z
represeat the difterent defense and offense levels respec-

'¼ tively. The sclution to the allocation problem consists of

finding these vectors = ( 0x xx,...) and

"*J (Y. ,. .y,..--) such that a fraction r, of the targets are

selected at random for no defense, a fraction x, are

selected for defense by 1 missile, etc., and siailiarly for

the vector T. !hen E(fracticn of targets saved) is
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This problem can be expressed as a constrained game which
are usually solved by linear programming. However, Matheson
f[Ref. 3] has found a soluticn to the preallocation problem
without using linear prograiuing explicitly. The results of
flatheson's vcrk are rather difficult to describe concisely;
the reader is urged to refer to the original paper for
details. The problem car. be simplified by setting
p = f = 1 (perfect weapons and missiles). In this situation,
the optimum offense and defense strategies can be given in
terms of a and d in each of two cases:

* defense dcxirzant, i.e. [2d÷1] a [2a]. In this case, thedefense strategy is

,= 2([2d+1]-d)/[2d÷2][2d+l] for i = 0,,1,...,[2d] ,
•V

and x[÷,!= (2d-[2d))/[2d+2]

and th; offense strategy is

yZ = 2a/[2d+1][2d+2] for i 1,2,...,[2d+1] , and

y. = 1 - 2a/[2d+2]

"* offense dcxinant, i.e. [2d+l] < [a]. In this case, the
defense strategy is

"" = 2d/[2a][2a-1] for i = 1,2,...,[2a-1] v

x. = 1 - 2d/[2a] ,

and the offense strategy is

* 212a)-a)/[2a][2a-1] for i = 1,...,[2a-]

_-A' y,,= (2a-[2a1)/[2a]

In order to get integer allocations which say
not be possible using the previous analyses, an iuteger
strategy game analogous to the Matheson game can be defined,
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-hereby the mixed strategy used is a probability distribu-
tion function (p, ,P&,..,p taken over N different pure
strategies (the actual allocations of an integer number of
missiles or weapons to each of the T targets). This integer
allocation gave is impossible to solve in closed form except
for very small numbers of weapons, missiles, and targets,
because the number of pure strategies becomes very large

,*• guickly. For q= 0, and 9,= 1 hovevzr, the value of the
"Matheson game is the same as that of the integer strategy
game. If D (cr A) and T are not too large, it is possible to
find the optimum strategies by using linear programming,
which can also be used to solve various generalizations to
the Matheson game such as:

* upper limits on the number of missiles or weapons that
can be allccated to a target,

* allocaticn doctrines besides one-on-one,
* several different types of missiles or weapons,
e independeat defense regions, and
* generalized shoot-look-shoot strateSies.

The variance in the total number of targets
saved if both sides use pure strategies can be given by the

N upper tound Var(Z) _< T'V(1-V)/(T-1), which shows that the
variance bopd depends only cn E(fraction of targets saved)*

and not on the missile and ueapon allocations.
It can also be argued that if both offense and

defense use lure strategiesthen as T-Poo, the distribution
of the .uaber of targets saved converges to a Normal distri-
bution vithi mean 0 and variance less than 1. This limiting
N ormal distribution can be used to sake estimates of the
frobabilities that tLe numbcr of surviving targets is less
than, cr greater than, a specified value.

Another model fox the preallocation offense and
defense whan neither side ktows the other's allocation is
known frequentll as a *Blotto game', whereby the defense has
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a single real target mixed vith (T-1) dummy targets, and the

offense# not knowing which is the real target, allocates

weapons among the targets. The Blotto game can be formulated

either as a discrete game or as a continuous game. When

5" = p = 1, and a 2 d (offense dominant) , the optimum offense

strategy is to attack a typical target with aL weapons,

where aL is a random variable drawn from a Uniform distribu-

tion U(O,,2a); the optimum defense strategy is to defend a

typical target with probability d/a, using d; missiles,

where di is distributed according to the same Uniform

distribution
If a S d (defense dominant), the optimum offense

strategy is to attack a typical target with probability a/d

using aq wearons, where aý is a random drawing from a

Uniform distribution U(0,2d), and the corresponding optimum

defense strategy is to defend a typical target with

dL missiles, where d, is drawn from the same probapility

distritutioz.
ihe general form of the optimum offense and

"defense strategies for a continuous Blotto game with one-on-

one engagements was derived assuming that the probability
that a target servives wven attacked by y weapons and

defenled by x .issiles is of the form

?(Z~ S sty) # 0 S y :S x

SX s) t(7-x) , z $y
where s(x) and t(y) are convex fumnctions with continuous

derivatives, aad s(0) = t(0) = 1. If f(y) dy and g(x)dx are

the fractions of targets attacked by weapons and dofended

"by x missiles reslectively, the optimum defense strategy is
given bh gtiý satisfying the equation-:

f:g (3)Pl•, d1 =-h(y) in some interval U < y < V. and

•glxjPlx,,y)ex > a-•(y) outside this interval.
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-The quantities a,h,U,V are determined so that
i-ha is maximized. The corresponding offense strategy is
given by f(y) satisfying the equation:

"•f f(y) P(x,y)dy = n+kx in some interval U < x < V and

"f•,(y)P (x,y)dy < n+kx outside this interval.

Again, the quantities n,k,U, are determined so that n+kd is

minimized.

When the defense is not able to perform attack eval-

uation for each target, a group preferential strategy would
-eed to be adcpted by the defense instead of a preallocation
strategy. In this case, the defense allocates all of its
missiles to defend only a subgroup of the targets. In this
subsection, group preferential strategies are considered in
N-vo situaticns:

* varying attack size

* fixed attack size
When the attack size is varying, one possible

defense strategy is to defend a random subset d/k of the
targets with the entire stockpile, where k is an integer
value. When any target within the subset is attacked, a
missile is allocated to it. It is assumed that the offense
knows the value of the fraction d/k, but not the actual

defended subset, and attacks the targets in waves of one
weapon against each target with a total of i waves, where i
is a random variable from a probability distribution with a

mean of a. In this situaticn, the optimua offense strategy
is a strategy containing a lover and upper attack level

denoted by i aud (aj) respectively.

If k = a, the defense stockpile will be equal to the
expected attack size on the defended subset. As d-*a, the
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advantages of randomization are lost, If d a a, the best
defense would be to engage each weapon, abondoning the group
preferential strategy.

If the value of k is not known to the offense, he
could tailor his attack such that E(fraction of targets
saved) is the sane no matter what value k is selected,
d5d < k t, by selecting the Matheson strategy corresponding
to d = h, t =1.

When the attack size is fixed, two extreme cases can
be considered:

9 weapons azrive at randcv, and
* weapons arrive in an order controlled by the offense.

Each side knows the other's stockpile but not the
specific allocation of weapons to targets# or which subset
of targets have been selected for defense. It is assumed
tbat p = f = 1. When the weapon arrival order is controlled,
the decision to use a group preferential or a preallocation
strategy defends on what the defense thinks the offense
knows about his plans. If the weapon arrivals are random, it

ýik is likely to be profitable for the defense to shift from a
preallocation to a group preferential strategy.

3. UZe_ Prealloation nU4 •M -sea tion =_ 19gia

A mixture of preallocation and non-preallocation
strategies can he selected by the defense as follows. The
target set is divided randoaly into disjoint groups of
various sizes, and a fraction of the total stockpile of
missiles is allocated to each group for defense. It appears

quite difficult to determine the optimal offense and defense
strategies as a function of A,D, and T if D < A and T < A.

- -IFor defense-last-move, the deteraination of an
optimal offense strategy is equivalent to solving a set of
nonlinear equations, and becomes computationally formidable
P's the complexity of the problem increases. If neither side
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knows the other's strategy tefore choosing his allocation,
the problem becomes a gaze-theoretic one. The expected
number of targets saved will lie between the offense-last-
move and defense-last-move values, and both sides must use
mixtures of strategies. In general, these gaze-theoretic

probleas are even more difficult to solve. One can use a
linear program to determine approximate optimum non-
preallccation defense strategies when both p and are less
than 1. However, since the expected fraction of targets
saved is not linear in the offensive allocations y; , where

yL is the fraction of targets attacked by i weapons, an
exact linear programming solution to the allocation problem
must consider as many linear constraints as there are pure
offense strategies (since a nixed offense strategy is a
linear combimaticn of pure offense strategies), which is a
very large number.

4.L-n* iAs~essa §A~q

Damage assessment by the defense enables him to
increase the expected fraction of targets saved by evalu-
ating target damage during the course of the engagement and

subsequently defending only undestroyed targets. On the
other hand, the offense can also damage assessment by
attacking in waves and obtaining information about the
effectiveness of earlier waves before deciding on the
targets for the next wave. The potential gains in using
damage assessment strategies are analysed in the following
two setsections.

a. Defense Damage Issessment

* a general defense-last-move damage assessment
model can be developed assuming that the parameters AD,Tp
and are knovn to both sides, and that the defense knows
that the offense will attack in waves of one weapon per

445



target in each wave. To simplify the analysis, it is further
assumed that the number of targets surviving after each wave
is given deterministically by its expected value.

Then p < 1, the optimal defense has the
following fcrm, with wave a arriving first, and wave 1
arriving last:

wave a thrcugb n+1: defend no targets,

wave n: defend a fraction ef the surviving targets, and
wave n-1 through 1: defend all surviving targets.

Shen p = I (perfect weapons), this strategy must

be modified so that a fraction of the targets is defended
- starting at wave a. The value n is equt;.1 to the smallest

value cf i fcr which Q1 a d where

-+ ( I~~10 ( - 1. 1 "I)

The expected number of missiles to allocate to targets on
the ith wave d, can be given by a set of recursive equa-
tions, and I(f) is given by

E (f) = [d,1 /!r) (9,+ (1-q) Sg,

.he maximum value of D required if alI targets are defended
at all waves is

a T ,j ('-T I2%- (1-00- 1'I •)

X Comparisons of the expected fraction of targets
saved in the case of 2reallocation strategy and damage
assessment strategy show that there Is not much improvement
made by damage assessment. 7bus these strategies gain little
for the defense in the case cf defense-last-move.

b. CL.ense Damage Assessment

"Cffense damage assessment strategies have been
consitered in the cases where both missiles and weapons are

t.¾%
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perfect, only the defensive missiles are perfect, and only

the attacking weapons are perfect.
In the case of perfectly reliable missiles and

weapons# the defense can maximize R(fraction of targets
saved) in a k-wave attack by observing the number al of
weapons per surviving target allocated by the offense at the
ith attack wave, and then selecting dt, the corresponding
number of missilea- allocated per surviving target at the ith
wave such that at/d4 = a/d. In this case,

kE(f) = .d/a)

a better strategy for the defense would be to select

d = lik missiles to be used in each wave. The fraction of
targets saved using this strategy is greater than S(f) with
equality occuring when aT/k weapons are allocated to each
wave.,

In the case where weapon kill probability is
less than 1, the problem becomes more complex. To simplify
the analysis, it is assumed that the offense does not reat-
tack a target if a weapon assigned to that target was not
intercepted by the defense, even though the target may
survive. Then

ASL
(Ef) = I - Z f &(I1- (dj/aL 1-(1-p)fl )

401

where fi = Ttd /a;

The optimal strategies satisfying max mz1 E(f) appears
unsolvatle in closed form. in upper bound can however be

easily obtained if an infitite number of waves is assumed.
let the let uave attack be a, = a-d weapons per target. In
subsequent waves, if the defense allocates cX missiles per

> target in the ith wave# the attacker allocates at = d,
weapons per target in the (i+l)th wave. The expected frac-

tion of targets killed is 1-11-p1'J
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A scaewhat different offensive damage assessment

problem can ke considered assuming that the defense does not

know the wearon stockpile si2e A. The offense is assumed to

allocate one weapon at a tine to a target, and continue

firinj at undestroyed targets until all T targets are

destroyed. In this situaticn# an appropriate HOE for the

defense would be to maxiuie E(number of weapons required

to destroy 7 targets). The optimum missile allocation can

then be found by dynamic prcgramming using the recursion:

f (is,J) = max [I +f (isJ-,m a1•(-)) +f (i-lJ-n)p (l-Y)'F}

where f(i,j) = r(number cf weapons required to destroy

i targets given j missiles are availakle).

5. ttacDer-Oriente Defense St ges

The preceding secticz considered the gain in effec-

tiveness if the defense could assess damage to its targets.
"In contrast, there may arise a situation where the defense
is not able to predict which target a weapon is aimed at
before allocating a missile to engage it. The best that the
defense cam do in such a situatio; would be to use an
attacker-oriented strategy and assign missiles at random to

the weapons cn a one-to-cne basis, and knowing this

strategy, the offense would attack each target with

a weapcns.
If d a a, every weapon will ke allocated I missile.

If d < a, the number of weapons which are actually inter-

ceptel would be a random variable from a binomial distribu-
tion with parameter d/a.

Two distinct cases can be considered for attacker-
oriented defense: when Deither side knows the otherts
allocation, and when the attacker knows the defender's allo-

cation. In toth cases, it is assumed that both sides know

Sthe value of &,C4,,T, and P.
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When toth sides must sake their allocations in igno-
rance of the other's allocation, the optimal strategies for
toth are to allocate missiles and weapons randomly and as

uniformly as possible. In the case where the attacker has

the last move, the optimal defense strategy is to allocate
missiles as uniformly as possible to the targets. If D/A is
an integer and the defense uses his optimal strategy, the
optimal offense strategy would be to assign [A/T] weapons to
A-(A-IfA/T]) targets and tA/TJ]÷ weapons to A-TCA/T]
targets.

D. STRATNGIUS 10 A GROUP Of 1ON-IDENTICAL TARGETS

In this section, offense and defense strategies for a
group of targets with unequal values % are considered. The
value of a target may be related to some physical parameter

of the target such as the human population for a city
target. It is assumed that the target values and stockpile
"sizes are known to both offense and defense. An appropriate
BO2 in this case would be the expected value of targets

"saved, E(V). Since the tarSets have different values, it is
reasonable tc assume that t.ey would have different vulner-

* abilities; hence the value of p, the weapon kill prob-
ability, will not. be constant, but will vary with the target

:w with wbich it i6 associated. In general, the approaches that
have been developed to fimd optimum offense and defense
strategies fcr targets of unequal values lead to approximate
soluticas rather than exact ones. The following situations
have been analyzed hy researchers;

* one-sided allocation ptcbleas,

* offense-last-move strategies,

e strategies when neither side kzcws the other's alloca-
tion,

strategies when offense stockpile size is unknown, and
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A attacker-oriented defense strategies.

Each of these situations are presented in the following

subsections.

1. On-Sid-e4 Allocation IL "1S

A one-sided allocaticn problem exists when the allo-

cation strategy of one side has been specified and is known
to the other side who then designs his optimal allocation to
counter that specific enemy strategy. Two mathematical tech-
niques available for this type of problem are dynamic
programming and Lagrange multipliers. To utilize these
methods for finding the maximum value of E(V) and the
optimal defense allocation for a specified offense alloca-

tion, the prcblem can be formulated as

max *ZE(i,d,) subject tc ZTC&dL C ,

where E(id ) is a general function denoting the expected

value saved at the ith target if di missiles each of cost ci
are allocated to it, and C is the total available defense
budget for missiles.

The dynamic programaing approach solves successive
maximi2ation Frcblems using a recursion equation, whereas
the Lagrange multiplier method finds the unconstrained
maximum of the Lagrangian function either by direct differ-
entiation of the Lagrangian, or by direct search methods.

2. = jj jA.h off2sgg-LaJt-Rov

Various methods for determining offense and defense

strategies when the offense has the last move have been
proposed. The alproaches to this problem can be divided into
two categories. The first category uses an arbitrary payoff
function E(i,a•,dL), while the other category assumes
specific paycff functions. In general, specialized payoff

functicns sia~lify the analysis considerably.
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4! Using the Lagrange multiplier approach, approximate

upper and lover bounds for j*(V) can be obtained, if optimal

strategies are used by bcth sides, by introducing the

Lagrangian function:

L(h,v) = lax sin {fE(i,aj ,d)-a•}

A lover bound to E*(V) is given by

E(i,a,*odj) - 74d* + v.Ta

where (?k,v ,a*.,d *) is the maximum solution to the

lagraigian. An upper bound to 3* (C) can be obtained by

finding aaxitum solutions to the Lagrangian for other values

of x and v. e.g. A, , v, with corres;onding values adL',A'

and D'. Then if E(i,ae,d?)-?ho(A-A')+v, (D-D') <ZT(i.a, .d*),
a range of 4 g, N S A can be eliminated, where a," in the

above equation changes the inequality. Using this elimina-
tion procedure successively for different Lagrangian solu-

tions, only a small region of in the vicinity of Ae will not

be eliminated, e.g. 'A - A* 54. An upper bound for E*(V) is

then the maximum value of L (7A°v) in the region A6 S h N ,
M = M,. If the difference between these bounds is small,

the use of the Lagrangian strategies a, and d# is practi-

cable.

Another approach to the same Froblem is by using the
dynamic programming relation

cZ (Ai,) tax sin ( (i~aL, + C. . (&-at # D-dL))o~*Aa oeSE

starting with i a I and sclving iteratively for a:?, d.'

i = I,...,T. the final c7 (IAD) will however only be an

upper tound to E*(V)* and the allocat.ion found viii be non-

optimil. A lover Loand can te found by adopting the veapou

allocation N*, and using dynamic programaing to determine

the c3rrespaonding defensive allocations.
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Three explicit paycff functions with increasing

degres of simplicity are ccmsidered.

In an idealized defense in which each weapon is

.4, intercepted by d /a missiles, the payoff function E(i) can

be given by

E (i) = V, (1-g4 exp(-tz d/a;)) ,

where t; = -ln(1-f;) .

Tbe exiected value of targets saved with optimal strategies

is then

a 2 min E, (1)

The problem of finding the optinal strategies aý* and dt* is a

very lifficult analytical Ercblen. An approximation to the

optimal strategies can be derived in the case when the total

.1 attack size is very large ccapared with the defense stock-

pile and the nusber of targets. Then

a*= (in c - (l-vt In u;hl/In u;

where ul = 1 - gq exp(-t;.D.) ,

In In= A * + n(-vý In uLila utjI/ /in ul,

d-* Ea / and n* (V) ,

-A valid solutcn is obtained when any Degative a$ are elimi-

.ated (target i left undefeaded), the closed fore solution

derived for the remaining targets, and the positive aq*

satisfj the ineguality

a$ela u;+ Lj4 < 1 * tLdL(l-ut)/u.

If the sissiles are assumed to be reliable, i.e. f
1. the Fayoff functiot is given by

.. ,, E~(i) =v•.!-
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aad E*(V) =j sin (E(i)-Ak-+wai

The optimizing values of d, and aj can be found for any A

and w in ihree cases:

7L < v: then dý* = (v;-t)/w for v < vx, and

$Ua = 0 or v/v w 1/x at will,

where x = -ln(1-p) and t; = (w/z I - in (v/vL x)

A = v: then d.P = any value in the range 0, (vL-t)/w) for

V < v! x
a. = 0 or vi/v / Iw/x if d* = (v -ti)/v and

a,.* = df - ln (v/v x) /x if d.< (r4 -t; )/v

v> : then d. = 0 and aj = max [0, (ln (v/vj x) ) /x) ;

Sand v are selected by trial and error so that a A,
and &$ = D. In the first two cases, dts - a* =0 if

In the case where k = I (perfect missiles and
weapons),

, E(i) = vý if al S d; , and 0 if ai >di

One treatment of this problem assumes a weapon

stockpile size noraalized to I and a missile stockpile size

of H a D/A. Using techniq4Qs from the theory of linear equa-

tions and number theory, it can be shown that there exists
certain canonical defense strategies corresponding to
defense stockFiles H *...,Hk such that the defense can

achieve the same E*(v) by using only H& missiles, vhere

H; S 3 S Hit . i.e. one lists the complete set of offense and

defense strategies for I S DA -9 T, and the optimal offenase/
defense strategies are those that maxisizes/uiniuizes the

expected value destroyed. This method is however only
feasible for small numbers of targets, as the coabinatorial

possibilities go up rapidly with increases in the number of

targets.
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S3. Sta•ge we Neithe_ S ib Knows j• 0thers

The gaze-theoretic situation where each side knows
the other's stockpile size but not his allocation to targets
is a very difficult probles mathematically. In order to
obtain optimum strategies, it is necessary to make a number
of silplifying assumptions to make the problem more trac-

table analytically.
If it is assumed that A a D and p = 1 = 1 with the

payoff functicn being tle expected value of targets
destroyed, the optimal offense strategy is to attack the a
single target with the entire stockpile k, and the defense
allocates its rissiles among the sore valuable targets,
leaving the less valuable targets undefended.

If there are only two targets with values v, and
V2 , the optimum defense and offense strategies can be
obtained in 5 cases:

* 3 = A-i (neither side dominant): the unique optimal
offense strategy is to allocate all weapons to the more
valuable target, while all defense strategies are

¾.•i equivalent. The value cf the game V is max (V, ,V,);
_ D - 2A (defense overwhelming): any defense strategy is

aftimum as long as at least A missiles are allocated to

each target, while all offense strategies are equiva-
46lent with V = 0;
"2 0+2 < I (offense overubelming): aay offense strategy

_i-% optimal as long as at least DO1 veapons are allo-
cated tc each target. The defense strategy has no

effect and V = v, +vx.

In the remaining two cases 4here 2A-1 Z D A. A
(defense doxinant) and Df2 S A :5 2D+1 (offense dominant),
the optimal strategies can he written as a convex linear
coabination of extremal stiategies cf the general form:
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allocate i missiles (or reasons) to the target of velue v,
and the remaining missiles (Cr weapons) to the other target
of value vl vith probability xi • where Z = 1. When
defense is dcminant, each extrenal optimal defense strategy
corresponds to a sequence N = (a,,..., *K) of integers such
that 1_<2, S2,5_ ... <w•R where k is the smallest
integer > (1)+)/(D-A+1), and R = k(lD-A+1)-A, and allocates

*: i(D-AI1)-m; missiles to the target with value v, (and the
remaining missiles to the target with value Y.) with prob-
abi lit y

(-v'•)/v.+v + , i = 1., .

Siailiarly each extremal optimal offense strategy corre-
sponds to a sequence (ni ,n,...) of integers such that
S(D--A 1  n._> and allocates i(D-A+1)-n; weapons to
the target of value v, (aad the remainder to target v, )
with probability

!( V k, 1"V 1-1) / l( V • "- + V , V it'l + . . .+ V , k ' V, + v x ), K 1I . . ,.

When the offense is dominant, the extremal optimal
defense strategies are obtained by substituting 1 = A-2 and
I = D into the extremal optimal offense strategy given
above, and the extremal cptimal offense strategies are
obtained by substituting 5 and 1 into the extreeal optimum
defense strategy forula.

£4. Matgjes = Ukncn J~g Stock.~.j_ §J1.

If the defense has no knovledge of the offensive

stockpile size, it is reasonable to design a strategy suc"

that the expected value of targets destroyed is approxi-

aately proporticnal to the attack size (robust strategy). If

the offense has the last move, the objective of the defense

would Le to viviaize the masimua (over all possible attack
strategies) expected valqe destroyed per weapou expended at

4
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the ith target, i.e. ai, SL where

-SL = max (v& -Z(i,aa ,dk ))/a•] . This is achieved by
selecting an optimal defense strategy (dI...,dp) such that
Sý = k at all defended targets and S, < k at all undefended
targets, where k is found by trial and error satisfying

÷. d#= D.
When neither side knovs the :ther's allocation, a

near optimal defense strategy can te constructed if the
missile reliability is assumed to te 1, and an uninter-
rupteJ weapon damages exactly one unit of target value. If vi
is an integer and 2 vL = D, then 0, 1,...,2vt aissilies are
assigned to the defense of a target of value vY, each with
.robability 1/ (2vý +1). If the stockpile size is D = k Z7 v,
the corresponding defense allocation would be scaled up to
be 0, 1, 2,...,2kvi missiles assigned with probabilities
1/(2kv +.1)

4. • •-"5. Att.ac•"-0riented Defns Strategzies

Attacker-oriented defense strategies are used when
the defense is ignorant of which targets the incoming
weapons are attacking. If tte offense has the last move, the
uniform attacker-oriented strategy described earlier for
identical targets is also citimua in the case of unequal-
valued targets.

If toth sides are ignorant of the other's alloca-
tion, the optimal defense is a uniform random attacker-
oriented strategy siailiar to the case where targets are
identical, i.e. allocate tD/A] missiles randomly to
'-D+A•D DA] inceming weapons and Dl/A ]+I Pissiles to the
remainder. The optimal offense strategy can be approximated
to be as follcws: allocate weapons to the T. targets of
greatest value, where T, is the maximum value of i satis-
fying the inequality

Vj (lv4 QT+ S i S T
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and Q =1-p(l-p*)

with

=p (1+D/1[D/A1) (1-(1-j) )+(D/A- D/A ) 1- (1-T) *

The number of weapons assigned to vj, 1 S j S T is

a; = (log c - log v; /log ,

where

:r.

* E. SIRATEGIBS 11 SPECIAL S17Di!IOIS

la this section, the ;roblem of allocating offensive
weapons and defensive missiles in three special situations

are presented:
• attacks on the defense system,

- defense using local and area missiles, and
b hudget constrained defense using local and area
aissiles.

These represent more realistic scenarios than the previ-
ously idealized cases of offense and defense strategies. The
mathematical models are consequently more difficult to solve
analytically, and it is necessary in lost cases to resort to
iterative search Ftocedures or Monte Carlo simulations on a
computer in order to find the optinal allocation strategies.

It Vas mentioned earlier that an alternative

feasible strategy for the offense vould be to allocate some
"" of his weapons to attack the defense system itself on the

premise that undefended targets vould" be more vulnerable

than defended cnes. The offense would normally attack a
critical component of the defense systea such that vhen it
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is destroyed# the entire defense system would be rendered

either inoperative or its operation would be seriously

degraded. Examlles of such critical components are radars,
comaand-and-ccntrol centres cr tactical communication links.
It is assumed that there are R such identical components
e.g. R radars all of which must be destroyed before the
entire defense system is considered destroyed. It is also

_ assumed that ttere are T identical point targets, the
defense cam carry out attack evaluation, and both sides know

* the other's stockpile size.
The NOE is the expected fraction of targets saved,

and can be given generically by
S; E (f) = pXE, f) + (1-p) Ra~f),

where p is Pr(all radars are destroyed), ZE(f) and Ej (f) are

the expected fractions of targets saved if undefended and
defended, respectively.

If the cffense has the last move and if missiles are
completely reliable, but tle radars are completely vulner-

able to attack, i.e. Pr(an undefended radar is destroyed by
a weapon) is 1, then the optimal defense strategy would be
to divide the zissile stockpile into two equal parts, and

* 5" allocate each part evenly tc the radars and targets respec-

55 tively, if the offense allocates his weapons evenly among
the defended targets. In sace circumstances when the attack
is not uniform, a better defense strategy would be to shift

some Aissiles from radars to targets, since only oue radar
is required for the defense system to be operative.

If the defense has the last move and has a central
stockpile frcm which missiles are drawn either to defend a
radar or a value target, he will defend a randomly selected
radar against attack as lcng as missiles remain in the
stockpile, and then use at attacker-oriented strategy to
assign missiles to incoming weapons starting with the most

•. -S lightly attacked targets. The offense will attack all radars

"I..,



with the sane number of weapons in order to reduce or
exhaust the defense stockpile. Above a certain number, the

radars mill no longer be a soft spot in the defense, and a
better offense strategy vculd be to attack the targets

directly rather than attack the radars. In the defense-last-
move model, the defense must make allocation decisions in

the course of the attack, kased on up-to-date information.

In alternative defense strategy analogous to the Matheson

strategy could ke devised, that do not depend on the capa-
bility to sake 'on-the-spot' decisions. However, this
strategy is inferior to the defense-last-move strategy.

* In tle case where the defense is restricted to a
one-oa-one defense for both radars and targets, and the

defense intercepts each attacker as long as there are still
missiles available, the problem of determining the minimum
necessary number of zadars so that the offense attacks
targets only can be solved. In a target-only attack, the
expected fracticn of targets saved is given by

B M = [q) + W(1-g.)04

and in a mixed target-radar attack, the expected fraction of
;., targets saved is given by

,E, (f) J (1-k) (q. +f(1-•1.1-

"where k t Pr(all radars are destroyed) =[-(q,+p(1-%))

a., is the nuster of weapons allocated to radars* and a., is
Pr(au undefended radar survives an attack by a weapon). The

.ini*4m neccessary value of R is the smallest R for which
E.(f) 2 Et (f) for all a, in the interval (0,A/9).

In a model vith offensive damage assessment, it is
assumed that the offense kaoes the defensive stockpile size
but not vice versa, the attack is sequential with i weapon
at a time allocated to either a radar or a target, and the
offense can carry out damage assessment between firings. The

59

::.,>I



P

SMOB used is the expected nuaker of weapons required to kill

the T targets. Dynamic programming can be used to obtain the
optimal defense allocation to each incoming weapon# and the
offense allocation to eithez target or radar in each succes-

sive vave. If the expected number of weapons reguired tc
destroy i targets given j radars and k missiles and the next
attack is on a target is denoted by ft (i,j,k), and the anal-
ogous expected nuater of weajons, given the next attack is

on a radar, is denoted by f,. (i,j,k), then the recursive
equations are

i• •f(i, J r k) =maa {f ijk- a) ( 1-f 11-p)"a ) +f (i-1,s J# k-a) p (1-1)b I

"••i?' f,(i ,,J,k)=aax {1+f (i, jk-z) (IP1-)")+f (i, J-1,k-a) pr (I-fl)" #

f(i,j,k) = min ft(i,j,k)s fv(is ,k)I , where Pr = 1-qg.

If an offense strategy that includes attacks on
missile silos is considered, the problem becomes more
complex. In order to evaluate this situation, the following
assumptions are made: the cffense can attack missile silos,
radars and value targets in waves of one weapon directed at
each of the r missile silos, or at each of the R radars, or
at each of the T targets, and continues with the attacks
until I or fewer targets survive, the value of I being known
to the defense. all engagements are one-on-one given that
p = = 1, and there is mo offense damage assessment,
although the offense has the last move. The MOB used is the
expected nuater of weapons required to destroy I or more
targets.

The defense strategy is as follows: if the offense
"attacks the radars, allocate I missile to defend a specific
(unknown to the offense) radar; if the offense attacks the
targets, then allocate I missiles to defend a specific
subset (unknown to the offense) containing I targets; and if
the aissile silos are attacked, allocate half of the unused
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and undamaged missile stockpile to defend the silos of the
other half of the stockpile. If I and T/I are both integer
powers of 2# the number of weapons required to ensure I or

more targets are destroyed is

.A A = I-IR+D(1+logE) for B S T/I
= D{i+log,(7/I)) for F > T/I

The offense strategy is as follows; if R : T/I,
attack missile silos in logB waves of D weapons each, then
attack radars in (D/R - 1) waves of I weapons each, and
finally attack (T-I) targets in a single wave of T weapons.
If R > T/I, attack missile silos in log1 (T/I) waves of
D weapons each, then attack targets in D/T waves of

.9,i T weapons each.

2. Defense Un L ad I a's_

In the preceding discussion, it was assumed that

there is only cne type of defensive missile. A more real-
istic situaticn would be to allow two types of missiles: a
short-range local missile which defends single targets
(terminal defense), and a longer range area missile which
can defend against weapons directed at one of a group of
targets in an extended region (area aissile.-.). Various
possibilities for defense using both local and area missiles

are considered lere.
The simplest model involves the defense of a met of

targets of different values using DA area missiles which can
cover any target in the set and for which the defense has

" the last move, and D local missiles which are allocated to
"singlh targets Frior to the attack. It is assumed that both
sides know the other's stockpile size, and both weapons and
missiles are perfectly reliakle. The offense is assumed to
attack a subset of the targets, each one with a namber of
weapons prolcrtional to its value, while the defense
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"allocates iccal missiles in numbers also proportional to

target value. The area missiles are allocated to targets
such that they destroy just enough of the weapons directed

at each target to let the remainder be destroyed by the

local sissiles defending that target. The optimum fraction
S of total target value to be attacked is given by AL'/D• if

A,* < Dut where k* = A- (DA A) ; otherwise the offense attacks
the entire set cf targets. If the local defense covers only
a fraction b of target value instead of the entire set of
targets, k* = A - DALA+DL(1/u - 1)

If instead of the missile reliability being equal to
I, it is assumed that t lccal missiles or s area missiles
are required to kill a weapcn, A = A - (DAA/S)t, and the
optimum fracticn of total target value attacked is tk*/D

If the defense uses a preallocation strategy for
area 3issiles, and it is assumed that the targets have iden-
tical values, the missiles and weapons have perfect reli-
ability, and both sides know the other's stockpile size, the
problem can be formulated as a continuous Blotto game by
allowing the cffense and defense allocations to vary contin-
uously. The local missiles are allocated evenly among the
targets. The allocation of area missiles and weapons
depenls, however, on whether the offense or defense is
doainamt.

If d,(a - d&/2) : (a - di) where d. and dL are the
number cf area and local missiles available per target, and
the offense is dominant and he attacks a typical target with
a; weapons where a is ai random variable drawn from the

uniform distribution U(d•, 2a-ds). If, however,
d.(a - 0.5d4 , (a-d 1)a, the defense becomes dominant, and
in this case, the offense should attack a target with

probability

2a/d +2d4, (d+* 2d.d)•)

"62

N N

V, .7%X



using a; veapous, where a; is a random variable from the

Uniform distribution U(dL. d,+d.+!+do sd.). The defense
"defends a target with probakility

(1/VI)J d+ 24d, - (d1/d&)

using d0 area missiles, where di is a random variable from

the Uniform distribution (0, d.+J4* dd) .

A further relaxation of the &ssumptions would be to

allow several non-orerlappitg area defense regions, each

containing several point targets of different values v;

which are protected by local defenses as well. One-on-one

missile engagements are assumed, together with weapon kill

probatility keing equal to 1. An approximate solution to

this nested allccation problem can be found if the offense

stockpile is assumed to be of infinite size, and weapons are
allocited to minimize the cost in terms of weapons destroyed

per unit target value destrcled. The defense strategy is to
allocate area sissiles among regions so that the offense
minimum cost per unit value destroyed is the sane for every
sector. The local missiles are allocated among targets
within a region such that the minimum cost per unit value

killed is the same for everl target in the region, ignoring
the contribution of the area missiles.

The models considered here differ from the previcus

models in tLat the defense i given a fixed budget to divide

among local and area missiles. The optimization therefore

involves this division as well as the allocation of the two

types of missiles to the defense of targets. It is assumed

that the defense can purchase d area missiles per target
with his budget, and that the ratio of the cost of an area

aissile to that of a local missile is k, both values being
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known to the offense. Both sides know the other's stockpile

size, and a cre-on-one defense is used. Furthermore, it is

assumed that the weapons and missiles are perfectly reli-

able. Since the defense can use an attacker-oriented

strategy and save all targets with area aissiles if d a a,

the analyses that follow assume d < a, and consider three

cases based on specific assumptions about the area defense:

* lefense-last-move strategy for area missiles,

* area defense strategy fcr area missiles, random weapon

arrivals, and

e area defense strategy lor area missiles, controlled

weapon arrivals.

In the first case of defense-last-move for area

missiles, the defense has d-j area missiles per target and
jk local missiles per target, j = O,1,...,d. If the offense

attacks a fraction i/(Jk) cf the targets with ajk/i weapons

apiece, then jk of these weapons will be destroyed by local
missiles at each target attacked, leaving (a-i) jk/i weapons

to which area missiles are assigned. The offense can choose

i after observing the defense's choice of J. The optimal

strategies are found by differential calculus to be as

follows:
if I S a/d S k, J = d(I - d/a), i.e. allocate dl/a area

missiles per target, and i = a&I - d/a), i.e. a fraction

a/(dk) of the targets are attacked.

In the case of random weapon arrivals, as each

weapon arrives, the defense assigns an area missile to it

without knowing which target is being attacked, until the

"area missile stockpile is eibausted; then local missiles are

used. Veapon arrivals are racdom with respect to the targets

the weapons are directed against. assuming independent

Sengagements of weapons by local wissiles at different
targets, the probability that a weapon is intercepted ty an

area missile is (d-j)/a. If there are a.i weapons,
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i = 0,12,o... allocated to a target, the probability that
exactly a of them are intercepted by area missiles is given
by the approximation

No simple analytical soluticn to this problem can be

found; however the offense strategy i can be approximated by
dk-a+1 if d and k are small and d << a. If a > 3d/2, the
defense strategy j is approximated by d-1.

The model with ccntrolled weapon arrivals is
similiar to the one analyzed previously except that in this

case, the offense can contrcl the order of arrival of his
weapons on targets. The offense exhausts the area missile
stockpile with (d-j)T weapons, then attacks as zany targets
as possible witb (jk.l) wea~cns per target. The fraction of
targets to te attacked is determined by

i = max 10, a(jk+l)/(a-d÷j) - a)

The optimal defense strategy iz one of two ertremes: all

local or all area missiles, according to whether 1/k is
greatez than or less than a-d.
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4" 1. IN2IODUC[2101

In Chapter 3, an overview of the studies done on the

missile allocaticn problem that are mentioned in the mono-

graph ty Eckler and Burr was presented. This chapter gives a

survey of the investigations in this field conducted after

the monograph's publication, with material drawn from papers

published in scientific journals and postgraduate theses. A

list of these publications is given in the Reference section

of this thesis.

It is generally observed that the later investigations

into the missile allocation Froblem tend to model more real-

istic and hence more complez scenarios of the battle, in

contrast to the situations ;resented in Chapter 3, which are

fairly simple models with a number of simplifying assump-
tions made to make the problem solvable. As a result, the

.- inatheaatical formulations cf the problem are not generally

a•aenable to solution in closed form, and various solution

"techniques such as implicit enumeration algorithms, dynamic

progrimming techniques, linear and nonlinear progzammsLng

algorithms and other constrained optimization proceaures

were 4tilized to obtain numerical results.

This survey of the recent literature on the missile

allocation picblea is by no means comprehensive due to the

restrictions on the scope of the thesis given in Chapter 1.

Howevere, the literature tLat vas revieved revealed a number

of interesting analytical atlroaches to the missile alloca-

tion Froblem in specific, and soattimes novel, situations.

The papOrs that were surveyed analyzed the missile allo-
ie cation jroblem from a number of different perspectives and

I..
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used various analytical techniques. They can however be
loosely grouped for exposition purposes here according to
the specific scenario the acdel seeks to represent, or to
the objectives that the defender or attacker seeks to

achieve, as follows:

* strategies involving decoys,

a strategies involving attacks on the defense system,
* strategies involving specific types of defensive allo-

cations,
* strategies involving targets of opportunity,
* strategies with specific target assumptions,

* strategic nuclear exchange situations,

* strategies involving pzcportional defense, and
* strategies in a game theoretic situation.

The studies will be presented in the following sections
under these scenarios.

B. SIBITEGIUS INIVLVING DECC!S

In Chapter 3, Section B.4, the problem of allocating
defensive missiles to a mixture of attacking weapons and
decoys was considered in the case where a limited capability

of the defense to distinguish between actual weapons and

decoys exists, expressed in terms of his knovledege of the
probability distributions f (x) and fd(x) of some arbitrary
physical characteristic.

I. ft1-al Usn-g

Layno [Bef. 4] alsc cnsi*dered the defense alloca-

tiou against a mirture of weapons and decoys when the

defense is assuzed to possess a linited capability of
distiaguishitg tetween a wearon and a decoy, this capability
being guantAfticd y the prckabilities of mistaking a decoy
for a weapon p, and mistaking a weapon for a decoy p.. The
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defense is assumed to know the total number of threat

objects, the number of defensive missiles available and

their kill prcbabilities, and the values of p, and p,. The

objective of the defense is to minimize the expected total
number cf real weapons penetrating the defense, by finding
an optimal allocation of missiles against an incoming object

diagnosed as being a weapon and an object diagnosed as being
a decoy.

In the case where the defense has no discrimination

capability, the expected number of penetrating weapons can
be given by

Ud = r1

where Ar is the total number of attacking weapons, i is the

integer part of d, the average number of missiles allocated
per attacking object, and f is the fractional part of d,

i.e. d = i+f . If the apprcximation 1-ff z (1 -y)f is used,

then

LO Ar l =A, (1-?)

In the case where the defense possesses a limited
discrisinaticn capability, the average number of attacking

objects which are diagnosed as being weapons is

A" = Ar-PLAr+Pt Aj , where Ag is the total number of incoming
decoys. Similarly, the number of objects diagnosed as being

decoys can te given by

A4' = A4 -pl 1a+pxAr . The expected number of penetrating

I' weapons in the limited discriminatioz case can be given by

S= ~~+ p= (1-y ,

. where d,. and d4  are the nusbers of wissiles allocated to

each incoming object diagncsed as a weapon and a decoy

respectively.
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The Frobles of finding the values of dr. and d to
minisize L reduces to being a nonlinear program with a
linear constraint:

mmin 4 r %) (1y) r+pa(j_)4j
subject to .d,. + Ad =D

where r is the total number of missiles. The optimal solu-

tion jiven by layno is:

=(b-B)/(m*41) if (b-B)/(ml+l) > 0, and 0 otherwise;

and

d = (*-B)/(m'+1) if d( >) 0, and b otherwise#
where b = D/A,; , B = logp3, /a' (1-pl))/log(1-•) and

.m' = /k .

The solution is, however, not correct since B can become a
large negative number if p, is close to I, in which case
dr > O, and d* could be negative if -Am > b. For example, if

rA , A -- 2, p4 = 0.95, y." 0.6t and D =, then
d- = 2.15 and dý = -0.31 using the above two eg-ations.

The correct solution is as follows: letting
1-9 = e-", the cbjective function becomes:

min Ar((t-F2'e * P3,e )t

aud using the lagrange Multiplier technique, the optimal
soluticns are fcund to be:

where h is the Lagrange Multiplier.

If 4(1-pj)/(AA;) > I and xi,/(Ul) > I where

?L= Exp((A.lni((C1-p 1 )/A;) * Ajln(pa/AJ) -V.D)/(&,'+*&'))

then 1* = (1io(Vl-p-)/(A.,)) , dj = (t/o)ln{p.e,/Q•A;).
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Otherwise, suppose (1-p,)/1 > P1 /A•, then dg = D/Ag, and
df = 0, and if (1-pa)/Ak < pl/A4, then 0v = , and
d, =

2. O£felse Sratlly

Sverdlov [Ref. 5: pp. 183-264] considered this
subject within a different context. Wheraas layno analyzed
the problem frca the defense's viewpoint, Sverdlov consid-
ered the protlem of deplcying weapcns and decoys in an
attack on targets utilizing the two effects that were
mentione: in Chapter 2, tamely the defense exhaustiou
effect, and the saturation effect. In both cases, it is
assumed that the defender dces not possess any weapon-decoy
discrisinaticn capability, and that the engagements are
one-on-one. The MOE used is the expected cost of killing the
value target, and the offense strategy consists of deciding
whether to fire a weapon cr a decoy at each stage of the
"game while the defense strategy consists of either inter-
cepting the incoming object with a missile or not. It is
assumed that there is perfect information to both sides
about the state of the process.

When the exhaustion effect is utilized, the offense
launches wave after wave until the single target is
destriyed. It is assumed that N missiles are available. If
the value of the game is Vw, the cost of destruction I,
measured in terms of the cost of destruction incurred if the
attacxer uses real weapons cnly, is given byj

Vo Yu/(cai(g)}

-hers cR is the cost ul a real weapon, p is the probability
that the weaFcn destroys the target given that it survived
interception by the defense, and q is the probibility that
the weapon survives the intercept. w can be written in
recursive fori as
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0 .5(B + i,..' + B+ia-,.g -4cj,) , # . = g

with B - g-gr (1-p), c = -qr. (1-pg), r,= c,/ca, c, being

the cost of a decoy.
The sclution to the problem can be stated as

follows: if N < N*, where 1* = min (N: im > 1-re ), the
optimal offense strategy is randosized, characterized by the

probability that the attacker launches a real weapon,

,,, .")(pV~g..,)

The corresponding optimal defense strategy is also random-
ized and is characterized by the probability that the
defense fires at the incoming object,

"However for N > N*, the optimal strategies are pure: the
attacker always uses weapons and the defense always fires at
them.

When the saturation effect is utilized to overcome
the defense, tke offense strategy consists of finding the
"optimum number of decoys tc accompany the real weapons in
each attack wave. Two cases are considered, firstly when the
attacker can launch only a single weapon Iixed with decoys

in each wave, and secondly when the number of weapons is not

restricted to one.
In the first case, the expected cost of destructicn

when i decoys accocapany the single weapon is given by

c(as) (R)C) + c#)/(p(l- (1-q)/(a.1))•)

where U• is the number of defense systems protecting the

--* target, and each is assumed to act indepently of the others.

To minimize the expected cost, this expression is differen-
tiatel with respect to at to obtain the following optimal

offense strategy:
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if q > Is/(Ns *r,), the optimal value at' 0, i.e. there is

no need to have decoys;.
if q S Is/( ,+r,) , a* is either Laln ] cr Ia" ]+1, depending on
whether c([mi]) is less than or greater than c (Ca; ]+I),
where xg is the pcsitive root of the quadratic equation

*+ c, (q+I-Ns (1-q))up + Ci - cKn, (3-q) = 0
In the other case, where no restriction on the

number of real weapons mA per wave is imposed, but assuming
only one defense system is available, i.e. MS = 1, the
minimum expected cost of destruction when the attacker is
constrained to launch a total of n objects at a tine is

c,(,) = CD5 +,.i I (C*1 -CD) Um+ ((-p-'(-1 (-ptnp (o-g)/8) c* (a)).

Numerical procedures must be employed to solve this

eguaticn.

C. sIBITEGUS ZNVOLVTIG ATICKS o0 TER DNFINSE SYSTUI

In the previous chapter, the problem of attacks on the
defense system itself was analysed essentially from the
defender's viewpoint under a variety of assumptions. I1
contrast, Sverdlov [Ref. 5 pp. 31-182] considers the
problem from the point of view of the attacker, who seeks to

JFI allocate his weapcns in a successive wave attack between
"defense systcas and a single value target such that various
objectives Rre achieved, e.g. maximizing the probability of
hitting the target, or maximizing the expected number of
penetrators. In solving fcr the optimal strategies under

different sets of assumpticns, various applications of
stochastic dynamic prograaming and game theory are employed.

In general, the sequential optimal attack on the defense

starts with attacks on the defense system (if the offense
stockpile is large enough) until the weapon stockpile is
re dced to H*, then the offense switches over to attack on
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the value target which is assumed to suffer 0-1 damage, and

continues until the weapon stockpile is depleted. It is not

feasible for the offense tc switch back to attacking the

defense system, hence only cne switchover at M* is optimal

and no switcb is possible fzc an attack on a target to the

defense system in an optimal policy.

In the case where the defense system comprises a single
point target (a defense target), and the BOE used is the
probability cf hitting the value target, the optimal policy

can be obtained using dynamic programming, and is given by:

1 (T--Ma -:1 + -_____

and Ps are the probabilities that an unintercepted weapon
destroys the value target and the defense target respec-
tively, and g is the probakility a weapon will survive an

intercept by the defense system.

If the MCE is the expected number of penetrators, the
optimal policy is

H* = I + [ 1/P 5 (l-q) ]

then the Eroblem is generalised to include is defense

systems (and hence Ns defense targets), and the assumption

, is aale that there is no collateral damage among targets and9.

the operaticn of defense targets is independent, the optimal

attack strategy, using the maximum probability of hit
"criterion, is

, •('10s) a + !

"f"*(n) is non-increasing if the miss frobability ratio f(n),

defined as

:-•-- ~f(n) = 0-F•eqlnll/[-lPiq(D-ll}
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is monotone increasing. Most weapon survival functions q do
not have the monotone miss probability ratio property, and
M*(N) is actually strictly monotone increasing, i.e.
8*(n.l) > 5*(n). In this case, an algorithm based on the

A.. maximizing 1rolability of hit criterion was derived for
solving N*(Ns).

If the BCE is to maximize the expected number of pene-
trators, the cptinal policy is

If g(n) is strictly concave, 1* is non-increasing.
A special situation arises when the defense is assumed

to have the capability of switching to a cautious mode of
operation, in which the defense system becomes much less
vulnerable to attack, but at the same time is also much less
effective in intercepting attacking weapons. The defense is
"assumed to consist of a single system, and possesses a
limited capability for discerning whether an incoming weapon
is aimed at a target oz at the defense system itself. The
defense thus has tcur choices of action denoted as follows:

-* Ii: employ ordinary mode of operation (Mode 1)
reqardless of the classification of an incoming weapon;
P P2S2: emlloy the cautious mode of operation (Bode 2)
regardless of the classification of the weapon;

. P1S2: emplcy Bode 1 if the weapon is discerned to be
aimed at a value target ('anti-primary' weapon), and
.ode 2 if it is discerned to be aimed at the defense

.5 system ('anti-secondary' weapon);
:- * P2SI: employ Sode I if the weapon is classified as

anti-secondary and Ecde 2 if it is classified as
.ati-primary.

In any case, the probabilities that a weapon aimed at a
target and at tie defense system is correctly classified by
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the defense are and Os respectively, and the probabilities

of survival of the weapon when the defense uses the normal

mode and the secure mode are q, and q, respectively.

This problem can be formulated as a sequential gale.
Since one player (the attacker) has only two pure actions
"available to him, optimal randomized defense strategies
exist which six at most two of the four alternatives
mentioned above.

If 0p# 1-4 no optimal defense strategy exists in which
PISI and P2S2 are the only 'active' actions. If L r > 1-4,

P1S1 is active in all cptimal nixed strategies, and
conversely, if o(p< 1-g, P2SI will be present in all optimal
mixed strategies.

The first value of B in which both players resort to
randomized strategies instead of pure strategies (offense

* attacks value target, defense uses PISI strategy) is the
"•f* of the one-sided dynamic ;rograssing model given above.

*- The general structure of the optimal defense and offense

strategies is as fcllows:
- the number of weapons 5 _ :5 : the optimal defense

strategy uses purely the normal mode of operation, and
_C the optital offense attacks value targets only;

3* < V S< B** : the optimal defense randomizes over PiS1
ind PIS2, and the oftimal offense randomizes over
attack on the value target and attack on the defense

system;

8 8 > $** : the defense randomizes over P2S2. and the

offense randomizes over attack on value targets and
defense systems.

The vilue of as* can be calculated by the following set of'I
eqaaticns:

where V Lq P
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a'=(-g) (1-g$0,) )I

a" = IO,-q-(0- cc$)ggI1itPs 3Lgi Ps 01-.,))

= B-VOO and g K pSaI,0-)g09

D. STRITEGIES INVOLVING SPECIFIC TUPBS OF DEFUNSE
MLCCATICIS

In this section, situations involving models of partic-
ular defense systems are analyzed. The first concerns the
problem of overlapping area defense regions and the optimal
allocation of defensive missiles to rrotect targets within
these regions. In Chapter 3. the defense of targets with
local and area missiles was also considered, but only in the

S case where the area defense regions are non-overlapping.
kncther interesting prcblen that is considered here

concerts optimal defense and offense strategies when the
defense has a choice of allocating defense resources is
procuring 'numerically vulnerable" defense systess which are
easy to locate but difficult to destroy, or 'percentage
vulneratle' systems vhichare relatively difficult to locate*
but once locatcd can be easily destroyed.

The last model assumes that the defense consists of
severil 'layers* of defense systems# and that the attacker
has to survive all of there layers ia order to reach tke
target. The protability of an attacker penetrating all the
layer3 is analyted.

I. 21el1Uik" LMI Delegan it~qsD.

£Svinsomn, et. al. [kef. 6Gj consider the problea of
overlapping area defense regions ccutaining a number of
Foist targets of different values, and developed a procedure
that applies a dynamic Irogramming algoritias within a.
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general framework of successive approximations that allow
"area missile allocations to target 'sectors' to be optimized
sequentially within the constraint of the missile stockpile

size.
In the model, several area defense systems are

distributed throughout an area containing point targets of
different values. Each area defense covers a certain region
within which a subset of the targets are located. These
regioas say intersect, and when they do, the union of these
regions say be decomposed by these intersections into non-

overlapping areas called 'sectors'. Targets in the sectors
are defended by either a single area defense or several area
defenses. Asscciated with a given attack of a weapons
against target t is a function r* (dt) denoting the expected

value saved at the target if d missiles are allocated to

intercept the attacking veaEcns. The function may be given

by

rt (it) = vt.(1-pqCS) ( 1O-pgC•4p'•ft

where v, is the value of target t. p is the weapon kill.
probability, g is the probability that the weapon survives
an enjageaent by a missile, and ct and ft are given by

ct =[dt/at , f = at(c&+1) - dt

The objective of the defense is to maximize the

expected total target value saved over all targets. If an
optimal withir-sector missile allocation policl is employed
to allccate a total of Dj missiles to the defense of the

T targets in sector J, then the total expected value saved
for sector j is given by:

"f) (D;) = as t r, (d), vlere Zdt Di

This can be written in the standard functional equation of
dynamic programaing as:

f1,T (1) max r, (4,) * (Di -dr
0- a
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"which can be used recursively to find optimal missile allo-
"cations within each sector given a total sector allocation
of Di missiles. In order to find a set of optimal missile
allocations to each sector, the expected total value saved
over all sectors F(x) = • f; (tx7i) is to be maximized
subject to * x, = b; i = 1,., where n is the total
number of sectors, xi is the number of missiles allocated
from area defense i to sectcr J, Ij is the set of indices of
the area defenses that cover sector j. J; is the set of
indices of the sectors that lie within the region of area
defense i, bi is the size of the missile stockpile at area
defense i. and a is the total nuaber of area defenses. The
sequential optimization procedure developed runs as follows.
The missile stockpile of each area defense is first randomly

- allocated among the sectors which it covers. The expected
total value saved as a result of this initial allocation i
is then F (le) = tft L•X1.) The allocations of all area
defenses other than a particular area defense k is then held
fixed, and the allocations % , j ej1L of area defense k can
be determined using the stazdard dynamic progranming tech-
nique to maximize the payoff

F (x) I- f (x1 * xle ) Tf (Zxi )8 subject to7Exbj bu.

Starting with the matrix of missile allocations xk resulting

fro& optiaizing the allocations for area defense k, the next
area Jefense is optimized in the sate way with the other
area lefease allocations held fixed. This sequential opti-
-ization prccfdure is repeated for all the area defenses

, cyclically until an entire cycle passes within which no
• •sector payoff changes from that of the previous cycle* thus

indicating that a local maximum solution to the problem has
teen found. A set of local maximum solutions can be gener-
"ated by either varying the initial random allocation x" e or
by varying the crder for optinizing the area defenses.

78

I

,_ __ _:1+_ _



Furman and Greenberg [Ref. 7] also analyzed the
attacker's problem of allccating a fixed stockpile of

. weapons of different types against targets of different
values that are protected by a number of overlapping area
defenses. It is assumed that only one weapon type can be
allocated to a particular target or area defense, and that a
target must first be rendered defenseless, i.e. the area
defenses that are protecting the target must first be
exhausted before a target can be attacked. The decisions
that the offense must make that constitute his allocation
strategy can be represented by the following decision vari-
ables: the exhaustion strategy E, where ke E means area
defense k is to be exhausted; the binary variable bbj which
indicates which weapon tyre j is used to exhaust area
defense k; the binary variable tj which indicates which
weapoa type j is allocated to target i; and aj giving the
number of weapons of type j that are allocated to target i.
The total payoff to the attacker can be defined as

f D) ) LE (aq) t~j

where 1 is the number of targets, N is the number of weapou
types, and Dq (a-i) is the collection of damage functions
representing the expected damage to target i when a weapons
of type j are allocated to it. Di (a&i) can, for example, be
"specifically a square root law damage function

::" oi •; = vi (1-(1+q~ijv• )exj(-cjjW• 1

or a power law camage functicn

• .":'" ~Di (ai) = v•. {I- (1-,,ci)4"4

where v, is the value of target i. and cj is the damage

constant, a value Letween 0 and I, depending on the warhead

characteristics and certain measures of uncertainty.

"79

-o'

: :.::: ::: :



The complete mathematical programming formulation

for the off ense weapon allocation pro tlem is

max f(a)

subject to B c(1,2,o..,D) , where D is the total number of
area defenses;

a< , J = V,°oi, , where ij is the number of
weapor- of type J available;

t-I s i i = le, X#T;

a;j 0 if J e if where J, is the index set of weapon
types to which the target i Is exposed when using exhaustion

st-ategy E. and itiia +uzij S wj , J = I,...,3 , where xKij
is the nuaber of weapons of type j required to exhaust area
defense k.

This protlea can ke partitioned and written as:

nix [max f(I)] subject to the above constraints, where 2 is
chosen over all exhaustion strategies. The Lagrangian with
respe.t to the last constraint atout available weapon
resources can then be formulated, and the generalised
Lagrange multiplier method used to solve the resulting

.. lpro ble s:

min ax Imaz f(q) - -- W)

Swhere the sultiplierAj represents the price of a unit of

weapon type j.

For given A and B, the optimal values be*, a* and t*
can be found by simple enumeration, and when the coverage of
each area defense is the sane for each weapon type, the

optimal exhaustion strategy SO can ke found (for a given
price vectorh) by finding the mivinum-cat of a capacitated
netwock with vertices refresenting targets . and area

". defenses, and arcs representing the area defense coverages.
Details are given in the original paper of Furman and

*D Greenterg.
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In an earlier paper by Biercourt and Soland

[lef. 8], an offensive optimization model is analyzed given

specific defense levels. In a later paper by Soland

(Ref. 9]* the optimization of the defensive allocations.,4

given an offense-last-move situation and optimal offense
S.. allocation is considered. The scenario calls for a mixture

of overlapping area defenses as well as terminal defenses
with perfectly reliable missiles, and an upper limit on the
defensive stockpile sizes due to a budget constraint B. The
offense is assumed to possess a stockpile of size A of a
single type cf weapon that exacts a level of damage on an

undefended target (after its area and terminal defenses have
"been exhausted) according tc the discrete concave and non-

WI•' decreasing damage function fi (a;), where a; is the number of
weapons directed against target j. The defense's allocation
problem consists of finding the optimum number of missiles d-
to allocate to area defense region i, i = 1,....m , and

optimum number of point d-fense missiles d; to assign to
target J, j = i....,T so as to minimize the aaxiaum damage
the offense can inflict. If the number of weapons required
to exhaust the rea defense region i and point defense of
target j are given by f and P respectively, then a damage
functicm g can le defined such that 9j jai ,d) = 0 if
a,< e , and g9 (a, ,..) = f, (a)-el) otherwise. The joint opti-

aizaticn prcklea can then be formulated as follows:

sit (max I 9j(a;.d)

subject to a S :S

0 S dS s
SB

-•-•ai + S .eý s

and . dida - A6 , i S 1,...,
all
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where A is an indicator variable such that S= 1 if defense

of area i is to be exhausted and S = 0 otherwise. .D and Rr

are the upper bcunds on the number of area and point d&Cense

AA
missiles to he= allocated, C ld*, 1 is the total cost func-

tion atsociated with the defense allocation A and d_, and

d] is another indicator variable that equals 1 if the

defense of area i covers target j, and equals 0 otherwise.

The last constraint ensures that no target is attacked

unless all area defenses covering it is to be exhausted.

* This prcblem can be reformulated into a simpler form

by defining a function $A (A ,d t ) such that

subject to ai + Z ef S A

and CA.,i 101,...,m

"caa be calculated for given values of and _d by a
-ranch-and-bcund algorithm. The defen.der's proble A can thus

be forsulated as

-- •-[--min $A (_l d_ )

subject to C(4Adf) < B

_4A _ , and

0 < d, < ••

As a final step in the simplification process, the

upper hounds on the defense allocations are denoted by
S2 -1, and Dj -= ,

where pt and qi are nonnegative integers. This involves no

"loss of generality because C(d ,q ) for _dk > De for example
can be defined as being egual to infinity. New indicator

, 0-1 variables yi, i = 1,...,m, k = 1,...,p. and zji,

j = 1,...,T, 1, j are defined as follows:

A p
d= (26-1 -1 2 y , i = 1,...,u ,

= (2  - J = -. 2
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letting (yz) = , , z,,z 1,,...,z. 1.) to be the
new decision vector with XF&; + b inary components, the

defense allocatior problem can be formulated as

min

Ssubject 

to C (y,z) < B

Since it is assumed that %L (y,z) is non-increasing and
C(y,Z) is nor-decreasing, this problem can be solved by the

. lawler-Bell enuxeration algcrithm [Ref. 10].

2. Perc_.ta_. and NuxeEicALU VulnerabLe Def enses

"Shere and Cohen [Ref. 11] analyzed the problem of
offanse and defense resource allocations involving weapon
system develcpment costs ficm a game theoretic viewpoint.

Two classes of defense systems are considered in the model:
* percentage vulnerable (EV) systevs, e.g. Polaris subma-

rines, a fixed percentage of which comes under attack
fcr a fixed search effort by the attacker. Using random
search theory, the fraction of weapons surviving in the
ith PV system can be given by exp -a. (y; -r,)I and its
value after an attack is

f j (xt ,y& ) = vt (xi~ -gL )exp I-a. (y, -ri ) I

where vý represents tle value of the system (in terms
af destructive capability), x, and y; are the total

amount of funds allocated by the defense to the setting

up, and by the offense to the destruction of the ith PV
system, q. and rZ are their required development costs
associated with the aforementioned purposes, and ai
represents the vulnerability of the ith system.

* numerically vulnerable (NV) systems, comprising of

essentially static wealcn systems such as the Minuteman
ICBM system. The attacker's effort is distributed among
all the weapons of the system. In this case, the resi-
dual value of the jth NV system is
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f I'x *Y~.#Y~) =vl' (xs -g %1 ep (-aS' (yjl -r') / (x11-g '))

The model assumes an offense-last-move situation
with counterforce targeting only. The objective of the
offense is tc minimize the retaliatory capability of the
defense. Conseguently, the defense allocates his financial
"resources in a manner which maximizes this minimum. The
"problem can thus be formulated as:

max sin [ f4 (x,,yý) + 'I f;,l,:,,#V)1"Y 4. y "

subject to .x; +Z• xf = X (defense's total resources),

Z yL + : y' = Y (offense's total resources).

The autbors developed an iterative algorithm to solve the
allocation Froblem for a mix of PV systems only by extending

I the max-ain thecry, and hypothesizing that if the offense
"considers attacking the ith PV system, it will alloczte
resources y. in excess of g;, its 'cost of admission' for
this system; the defense, if it decides to set up the ith PV
system, will similarly allocate funds xi in excess of the
system's develolment cost R , so that it can procure at
least one veý.•cn. If the choice of A is unique for some
"optimal allocation x = x*, then the optimal allocation x*
and y* is also a solution tc the game

sax min( Xvt (xL-qj)exp~aL (y1-rL)J + I v, (xZ-qL))p ~ A

subject to Xxt = X, y: =Y ,
SX& >- q; i• , y; 2! r& A•

where A (i: y.* > r), B = (i. Y> g; >
(= :x Z x 0 for iB), #= .y; yj 0- for iA),

and y,* and xA* are the optimal offense and defense alloca-
tions respectively.

It camn be proven that A = B if A is assumed unique.
Hence the defense should nct invest in a new PV system
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unless it is of sufficient value for the attacker to pay the

penalty for at least a limited counter to this new system.

A solution methcd for the allocation problem in the
case of a general mix of PV and NV defense systems was also

developed . It was shown that at most one NV system should
be developed, and thus the problem reduces to the previous

problem concerning a mix of cnly PV systems with the amount

of investment in at most one NV system a parameter used to

determine the remaining aicunt of resources available to

allocate amcng the PV systems.

3. La_•Ued pefense

Nunn, et. al. [Ref. 12] analyzed the missile allo-

cation problem in the situation where the defense is

layerad, and the attackers try to penetrate the several

layers of defense systems. An example of such a scenario may
be an ICBM defense system or a high-rate-of-fire air defense
system which adopts a shoct-look-shoot strategy against

attacking aircraft. The objective of the defense is to mini-

mize the expected number of penetratois.

The analysis uses a Markov chain formulation. No
explicit representation of defense force levels is given.

Instead, it is assumed that the numbers of attackers pene-

trating (i.e. surviving) the ith layer is binomially

distrituted with parameters nt, g€, where n& is the number

of attackers apgroaching the lth layer, and q, is the prob-

ability that an attacker survives the lth layer defense. The

passage through the Ith layer is viewed as a transition in a

Markov chain, with the associated transition matrix A whose
elements a are given as:

a -J.. '•a 11  = ( j)g, (1-gt,

it is diagonalizable with AS = SD where S is a lower trian-

"gular tatrix whcse non-zero elements are those of Pascal's
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tri an g Ie, and D is a vector of the form

diag (1,q ,g ,...,01). It is shovn as a consequence that if

the distribution of the initial number of attackers is T (a

row vector whose elements make up the discrete mass function
of thi initial number of attackers), then the distribution

of survivors after penetrating through L layers of defense

is given by 7 *.1 . The product 11A. s just another siziliar
Smatrix with r-araeeter X g•. In the case where the initial
distribution T is binomial, that distribution is maintained

throughout the layers of defense. Moreover, the final

distribution cf attackers Is independent of the ordering of
the defense layers since the transition matrices commute.

E. 'TARGETS CY CPPORTUNITY

A unique variation of the missile allocation problem

concerns so-called 'targets of opportunity', which may be

value targets or incoming weapons. These targets of opportu-

nity arrive sequentially within a given time period, each

having a random value. In the case of value targets, the

problem concerns the allocation of defensive missiles to

protect these targets and weapons to destroy these targets.

In the case where the targets of opportunity are incoming

weapons, the problem consists of allocating defensive
missiles to intercept them. This class of problems can be

solveJ by dymatic programming.

Sakaguchi tRef. 13) formulated a generalised two-
person-zero-sum game under the following assumptions: the

attacker has A weapons and the defender has D missiles. A
total of T targets arrive sequentially, each having a value
vs, j 1,...,T, from a probability distribution F(v). The

allocation pclicy consists of a decision on whether to
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attack (for the offense) or defend (for the defense) each

target as it arrives with a single weapon or missile, and is

based on the value of the arriving target, the number of

weapons (or missiles for the defender) remaining in the

"stockpile, and the mission time remaining. The payoff for a

target of value v can be giien by p(1-)lv if the defender

decides to defend the target, or pv if the defender decides
not to defend this target. The optimal strategies can be

characterised by a system of recursive difference equations
using a dynatic programaing formulation.

If the defense and offense have d missiles and a

weapons respectively left in their stockpiles, and there are

t targets yet tc arrive, the value of the game
"•-V. V(aJ) =Value p(1-f) v÷V*-i (a-l,d-1) pv÷V*.,{a-l,d) dF(v),

V,., (aI,d-1) V_.I(aed)

with initial condition V. (0,0) = 0, and boundary conditions

Vt (0,d) = 0 VtCa,0) g,., 0 < k S t

Vt (t,d) = tpj - ý gt,ý 0 - 1 S t , and

V 4 (a,t) = I(1-) 1 g,*; , 0 _5 k S t

where g, , i = 1,...,t is a triangular array of positive

"numbers defined ty the recurrence relations

S- for t - 2, 4 = , and

+g - .SFd.-1, 1 w (~~g-. for 2 :5 1 S t-1,

The function Sg(z) is given by z+Tp (z), where Tp(z)

is the mean shortage functic¢ defined by
=. (1-P(x))dx

and u in the atove equation is the expected target value,

given as
*A I=•(0) = xdF (x)
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The optimal strategy for the defense and offense is

that of the matrix game in tke right hand side of the equa-
tions for Vj (a,d), if a target of value v arrives in state

(t,a,d). The explicit solution of the game is not easily

solvable even for the simpliest kind of target value distri-
butions. However, if the simplifying assumption is made that

target value is deterministic having a value of 1, the value

of the game V6(a,d) = pa(1 - 'd/t). The optimal defense
strategy is to defend the target with with probability d/t,

and sitiliarly, the optimal offense strategy is to attack
the target with probability a/t. A similiar continuous time

N- soluticn can le derived if the targets are assumed to arrive

-4 accorling to a Pcisson process with rate?7, i.e. the number

of targets and their arrival times are assumed to be random.

In this case, the value of the game is given by a system of

recursive differential equations which characterizes the

optimal strategies of the offense and defense.

Kisi [Ref. 14] considered the problem of allocating
missiles against attacking weapons (attacker-oriented

defense strategy) which arrive randomly according to a

Poisson process with rate X. It is assumed that the defense
has a fixed stockpile d of aissiles with reliability P< it

and adopts a shoct-look-shcot strategy for each incoming

weapon. The defense allocation strategy consists of deciding
whether or nct to engage an incoming weapon, and how many

missiles to fire given a limited number of missiles and
mission time remaining. It is assumed that the shoot-look-

shoot strategy is instantaneous, i.e. no time is wasted

- between firings within a salvo. Each of the incoming weapons

.*i have a randcm value which is distributed according to a

Uniform (0,1l) distribution. The objective of the defense is

to saximize the expected trtal value destroyed during a

given total mission duration.
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The number of weapcs that are expected to arrive

during a mission time t is Xt, and the expected number of

weapons destroyed is yd. Herce, only a fraction fd/(ht) of

weapons can be destroyed , and the defense should only

select targets with high values greater than or equal to a

critical threshcld value c. The optimal threshold c depends

on both the tize remaining t and the number of missiles

remaining d, and intuitively should increase as t increases,

and decrease as d increases. An optimal value function
f(t,d) is defined as the expected value destroyed when time

t and d missiles are remaining, and the optimal allocation
policy is employed by the defense throughout time t. Then

the optimal value of c is given by

c*(t,d) (f (td) - f(t,d-1)}

and an incoming weapon is allocated a missile so long as its

value v _> c*. 7he optimal value function can be derived

exactly, and is given by the following recursive relation:

-••((t,d) - (1-?) f(td-1)] =_l(f(td) - f (t,d-1) -fp) for

d = 1,2,... with initial conditions f(t,0) = 0 and
f(Od) = 0.

An ajprcxizate solution can be given in the form:

f (tsd) = S•d - fj/(?(t-to)))

where f, = fj-4+ I + J2? fA-k +1, and o= 0, t.= 2/7A

The difference between the exact optimal and approx-

imate soluticns c*(t,d) is negligible for large t. but

increase as t becomes small. However the difference between
the values of fit,d) in the two cases is negligible even for

small values of t.

.Iastran and Thomas [Ref. 15] analyzed the same
probler of attacking targets of opportunity , however under

a different set of assumptic¢s. Specifically, it is assumed
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that the defender can only attack one incoming weapon
throughout the mission time available, and that all missiles

will be expended in the intercept. A general probability

distribution cf weapon interarrival times is assumed instead

of the exponential interarrival times assumed earlier. The

conditicnal irctability D, that there is an incoming weapon
in the next time interval given that the last arrival

occured i-1 time intervals ago is given by

D= /(1- -1;) for i ! 2 and D, = T,

where 1; is the ;robability that i time intervals separate
successive arrivals. The value of the incoming weapon v
comes from a general protability density function g(v),
instead of a Unifcrn (0,I) distribution. An optimal value
functicn f. (i) is defined to be the expected value destroyed
when n time intervals resain, and i time intervals have

elapsed since the last weafon arrival, and the optimal

policy is used. A threshold weapon value K, that is varying
over time can be similiarly defined, such that the defense
will attack the incoming weapon when n periods remain, if
and only if its value v is greater than Ko. Given that there
is an incoming weapon, the expected value destroyed for the
case vben 9 (v) is continuous is

f,^-, (1) 9 (v) dv + I vg (v) dv
V*16

The function f (i) is maximized only when a weapon is
attacced that has a higher value than would he obtained by
waiting another time interval and obtaining 4,(1); hence

f, (1). Thus, the recursive relationship can be written
as

f (i) L ~j .f.(.1)g~v)dv +J vg (v) dv) + (1-Dý) (ffr.(i*1))

with fl (i) = fvg•(v)dv, and f.(i) = 0
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Using this dynamic programming formulation, the value of

f,(i) can be obtained fcr any n and i.

F. STIATIGINS IITH SPECIFIC TAIGET ISSOEPTIONS

Thus far, tle values of targets are either assumed to be

identical or ncn-identical from some probability distribu-
tion. In this section, the missile allocation problem is

analyzed under some special assumptions on the target, Viz.,

e deterioraticm of target value over time,

* ccsplelentary targets, and

* collateral damage between strategic and nonstrategic

targets.
Each of these situations is discussed in the following

three subsections.

1. Det~erioration 21f_ Tjj9gt nV•q ovj

"Bracken and McGill [Ref. 16] treats the prob.'em of

target value deterioration over time, and seeks an optimal

A: sequential attack strategy to maximize the expected target

value destroyed. The model assumes a set of weapon launch

center. with different capabilities in terns of the maziaun
number of weapons that can be launched at time t, where t is
discretized intc increnents of equal length equal to the

tiae between successive veapon launches. The target set

consists of a number of point targets with different values

which decrease scnotonically over time. It is also assumed

that the flight times of the weapons from a weapon center to
a target is finite, and are different for each weapon

center-target Fair. No explicit representation of defenses
.,

:1 is included; it is only implicitly represented by p• , the

probability that a weapon frcm launch center i hits target j

at tiae t. The conditional Irobability of destroying target
j given that the target has survived until time t is then

given ty Z' 9
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-r1-A )4 , = 1,...T, t = 1,...,r

OJ lot i

where a is the number of weapons launched from weapon

center i to arrive at target J at time t, p is the total

nuaber of weapon centers, T is the total number of targets,
and r is a value large enough to allow all weapons to reach

their targets by time r.
It is assumed that the offense has a fixed total

attack capability in terms of the number of weapons a that
can be allocated to the launch centers at each time incre-

sent t. Hence, if A; denotes the number of weapons available
at launch center i at each time increment # the constraints

-A S A and .aq S H hold, tq being the weapon from

launch center i to target J. The objective of the offense is

then tc find oftimum values cf a , i 1,o..#p, J 3 i,.T#
* t = OI...,r and Nj, i = 1,...,p to maximize the expected

total val'ie destroyed* i.e.

max E'i p T(1-pi)

subject to the constraints X .S A and fa 5S N

where v• is the value of target J at time t.

If the target values are sucii that vi a r, for
t = 0,1,...,r-1 (value nonizcreasing ever time), the objec-

tive !unction is concave in the variables 1.] t and since the

coustraints are linear, the Froblem becomes a convex nonli-

near program which can be sclved to yield a global solution.

2. g.M1,ementar Target

Shubik and Weber [Ref. 17] ccnsidered a generaliza-

tion Of the classical Blotto game for allocating forces to

independent targets in the case of 'complementary' targets

or networks, where the value of a subset of targets v(s) is

not elual to the total individual target values, but depends
on the target ccnfiguration. In this case, the defender's

expected payoff can be given by
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S&Wj it's;4

where I is the set of all the targets,, f; (d. *a;) is the

probability that the targets in subset S all survive, given
that the defense and offense allocations at target i are di
and ai respectively. In the case where homogeneous offense
and defense resources are assumed, and the outcome function

fu (dig,a,,) at the kth target is of the f orm

*~ ~ ~k(d. ,,~) = I 4h/lrk 0 (1-A/kI

where kc = a,, /d,, (attacker tc defender force ratio), and 4V
is a target parameter that represents its natural defensi-

ktility. and a is a parameter that reflects the importance of

the relative difference in size between the attackiug and
defenling forces which have total resources A and Dt the
force allocations are proportional to the
(ft *f1 .. , (D,A)-value of the underlying game if both
sides have cptimal pure strategies, where T is the total

number of targets. Furthermore, for all sufficiently small

values of a. these allocaticrs are optimal.

3. Mqr~e Ic W4 Nonstrategic Tagt

Grotte (Ref. 18] corsidered a plausible situatico

where strategic (military) and nonstrategic (nonmilitary)
targets are colocated,, and the objective is to employ coua-

terforce targeting of weapons such that sufficient damage tc

strategic targets can te ackieved without causing appreci-

able Jamage to the surrounding nonstrategic facilities. The

problem therefore consists cf finding an optimal allocation

* cf veapons tc a set of aimpcints such that minimum levels of
damage to a set of military targets are achieved while

pernissable levels of damage to a set of neigbbouring

ncaiilitary targets are not siurpa~ssed.
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This problem can be formulated as a discrete nonli-

near program:

sin I g' (z) A.

subject to f , (z) a c., 3 = i....,ft

9gA(z) _S d.,, n = 1...,N ,

jie
, ;1 1 ,...,I, 3 =1..., ,

where I and 9 are the numbers of military and nonmilitary

targets, I is the number of weapon types, and J is the

number cf Ecssible weapon ainpoints, w, is the number of

veapons of type i available, and iý is the number allocated

to ainjoint J, f..(z) and g4 1(z) represent damage functions

for the military and nonmilitary targets, c. aud d. are the

imuinua accelta-le and maximum peraissable damage to zili-

tary target a ard nonmilitary target n. and ha is a nonnega-
tive weight for nonmilitary target u.

*• The solution to the irobles is by implicit enumera-

"tion based on the lexicographic technigue of Law!er and

Bell.

G. SIRATEGIC TICBHAGE WODIS

It %as mentioned in Cha~ter I that a number of studies

on the missile allocation pzcblem is done in the context of

a strategic nuclear exchanse between two superpowers. In

this section, three such Eapers are presented which are

representative of the studies done in this field. The first

*•, paper formulates a general two-strike nuclear exchange es a

suax-sin problem, while the second proposed a model to opti-

oize defense allocations in crder to ensure a minimum level

of post-attack economic capacity. -he last study optimi2es

the allccaticn cf resources for population defense.
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1. GeeM ; Iwo-Strike uclear xchan

Bracken, Palk & !iercourt [Ref. 19] present a

generil forsulaticn of the two-strike strategic nuclear
exchange, in which both sides possess multiple weapon

systems and value targets. It is assumed that the first
striker allccates all his weapons against his opponents

value targets and possibly against his strategic weapons in

an optimal countervalue-ccunterforce targeting mix. The
seconI striker then retaliates with all his surviving

weapons against the first striker's value targets. This

two-strike Ircbles can be formulated in general as:
max sin {(L(x) - Dz(Y) .

where I is the set of allocations xj* denoting the number of

the first striker's type i warheads allocated the second

"striker's type j resources, Y is the set of allocations yi

denoting the number of the second striker's surviving type j

warheids allccated against the opponent's value targets. D,

and 3, represent maximum value damage to the first and

seconu striker resfectively from the opponent's weapon allo-

cation against Lis resources.

An ajFrcpriate function that is convex representing
the expected number of surviving seccnd striker's warheads

is

where n; is the total number of the second striker's

type j weapons, Vj is the number of warheads Fer

type j weapon of the second striker, and qq is the single-

shot survival Frobability fcr the second striker's type j

weapon when attacked by a single type i warhead of the first

striker.
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4.

On the assumption that D& is a nondecreasing func-

tion, the solution to tie second striker's allocation
problem becomes simply

min -fD (y)] = max D, (y) = -D,(Q)

where 2) = B) (x), i.e. the second striker allocates all his

surviving weapons-against the first striker's value targets.
The two-strike prcblem can thus be reformulated as:

aax {DR(3) - D, (&)I subject to g a B(LE)sox

If the maxinua value damage functions are assumed to
have the following specific forms

.. • (1) = V1(1-exp(-Zf; (x6))], D,( z V, 1-exp-X g, (z.j

where the functions f; and gj are continuous and assuied to
be linear and x& denotes allocations to value targets, the

two-strike exchange problem can be expressed as

max (V,-V:) - Vlexp(-tg) + V: exp(-ts)
7

subjezt to: I xq 5 m4 , i = I,..,I

ta Z:Zg (zj)

I n i 2t an 1j V)~I[f X jj q in /Li.. ,

where ci is the number of the first striker's type i
warheads. ihis is equivalent to a separable nonconvex
prograa, and an approximate global sclution can be found by
applying a tzancb-and-bound algorithm after replacing each
noalinear function by a piecewise linear approximating func-
tion.

A later paper by GrCtte [fef. 20] expanded on this
.,odel hy considering Lour specific weapon types on each
side, namely: ICBMI's, submarine launched ballistic missiles

E

96



SIBM-at-sea, bombers, and SIBU-in-port, and deriving sepa-
rate eguations for the seccrd striker's surviving force of
these four wearcn types after a first strike, which have as
parameters original force levels, reliabilities of the
attacking weapons, penetration and kill probabilities, etc.
The maximum value damage functions were specified as

D, (1) = V, 11-exp(-• aj x'A ) and D. (y) = V, (1-exp (- b; Zi )),

where the parameters aj , uZ, b;, v; are selected to reprs-
sent the first and second striker's response to allocations
; and y.. Shis more detailed problem was solved usiag tCe

same tranch-and-bcund algcrithm after forming piecevise
linear appicximationr for each function in the separated
problemm.

2. EnsqLr• Post-Attack Production ties

Bracken & McGill [Ref. 21] p=cpose an economic model
of strategic defensea, and formulate a mathematical program
for allocating a minimum ccst mix of defense resources to
"geographical revions such that a specified minimum level of
economic production capacity kill survive after an optimized
"attack by the offense. It ic assumed in the model that the
country is divided into geographical regions (defense
regions) with different econcuic sectors, each being charac-

0 tet.zed by a Ccbb-Douglas Eroduction function of the form
•H (Km;)`1 (LIj) hJ vhere Hi represents the technological effi-
ciency of econcsiý- sector i in geograEhical regiou J, Kqj is
the corresiqrding capital base, L the labor base, eq and Oij
denot6 the elasticities of value added with respect to
capital and latcr respectively.

The post-attack production function (in terss of
value added) in sector i of region j can be given by:

P = HL

where B = U (1 - (exp(-Z x.i dj 11 11 - exp(- y• 111 ,
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K5 = I - (exp(-. dit )(I - exp(-yj" aý))'

La L 4 1 - (exp(-x& dA ))(I - exp(-Iy',4t a3 )))'I

where the standard Cobb-Douglas form has been modified to
make the expression a function of the offense and defense
allocations, dý being the number of defense resources of
type k allocated to region J, k = 1,...,p, j = 1,...,n, and
aii being the number of weapons of type 1 targeted on region
J in an attack on econcic sectcr i, i =

•:" ~~1 = 1..q

The parameters x4, 4 and 4j, yg * y.ý , and
might te estimated from detailed analyses. Assuming that the
unit cost of defense resource k in region j is cjk * and the
required minimum level of post-attack production capacity
for eccnomic sector i is r., the obective of the defense to
find an optimal (minimum cost) allocation of defense
resources to geographical regions to ensure the surviv-
ability of a minimum level cf production capability can be
given ky the mathematical pzcgram:

min cj

subbject to: sini • p* • r, , ± = 1,..,m

and Z aý < AL (the number of cffensive veapons of typ.e is

This is a convex mathematical program with nonlinear

programs in the constraints, and can be solved by a SUST

computer program.

'4 ~3. £21IoaI2. Defease jj 1 Mfag39j. Attack

Kupperman & Smith [Nef. 22] approached the problem

of optimal offense and defeLse strategies in a unique way in
their study cf the role of population defense in mutual
deterence. Their model assumed that 'centres of destruction'
are placed at randoz in a ilane, forming a Poisson process
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of density a Icints per unit area, with a circle of area A

(area of destruction) centered at each of these points. The

probability that an arbitrary point in the plane will not be

"covered by any of these circles would be the probability
that aone of the points of the Poisson process lies within a

circle cf area A centered at that point, which is exp(-mA).

If a value density v(x) is associated with points x in the

plane, and value is considered to be destroyed in regions

covered by the circles centered at the Poisson distributed

points, the expected remaining value density is v~exp (-mA)),

and conversely, the density cf destruction is v(1-exp(-ma)).

This formula yields a good approximation in the case where

weapons are delivered with random errors which are a

substantial fraction of their lethal radius. If this Poisson

type model is applied to cocapute the maximum destruction

inflicted on a circularly symmetric Normal value distribu-

tion, the maximum damage function can be given in the form

f(n) = I - (I1BJ )exp(-BJi)

where n is the number of weapons, and B is a parameter

constant. Ihis function gives a reasonably accurate repre-

sentation of maxiuuz net destruction for urban areas in the

US based on census data and weapons of less than one megaton

yield.
To ccmpute optimal offense and defense strategies,

it is observed that the effect of an antimissile defense

would ke to reduce the value of a, so that a general

destruction density of the form p v(1-exp(-V.m.0)) is

obtained, with 0 being a Farameter between zero and one

reflecting both the deployment of the defense and its tech-

nical characteristicst and w is a parameter. Using a gener-

alization of Gibb's Lemma and the concept of decreasing
marginal utility, an optimization of the defense to minimize

at fixed total cost the maximum destruction of value caused
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by an attack of fixed size is found. In essence, each

defense force is characterized by a value h such that the

total defense stockpile D is given by

D (1/v) f wv (x)/?L - 1 - log jwv (x)/ 1) dA (x)

and the defense allocation d(x) is given by

d x) = (10/1w) wvx(• -A log(wv (x)/hl) , vv6xM > A

"= 0 otherwise ,

vhere the integral is taken over all points x such that

Vv(x) _ 7t. This strategy is optimal whatever the size of

the offense stockpile.
Every level of offense marginal utility p <h has a

unique force level. The total attack size A is given by

A -t log• .ý ), JAW

where the first integral is taken over all x such that
vv(x) 271, and the second irtegral is taken over all x such

that ?> vv (z) 1 a. The payoff to the offense is

P =J(v (x) - a/v)dA (x) #

with the integral taken over all x such that v(s) Z

Ž' H. PBCPORUCI&I DEFE15 STSITIGIRS

In the case where the defense is at a disadvantage, e.g.

when the offense has prior knowledge of the defense alloca-
tion before making his own allocation of weapons to targets

- (offense-last-move situaticn), the defense can 'insure'

against excessive losses by taking the defense proportional,

in the sense that the attacker must pay a 'price' that is

"proportional to the target value extracted.

A class of proportional defense models comprises the

so-called 'Frim-Read' missile deployments (named after their
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"developers R.C. Prin and W.I. Read), for defending against
an attack by an unknown number of independent and sequen-

tially arriving veapons, vith the objective of minimizing
the total expected number cf defenders subject to an upper

bound on the zaximum expected target value damaged per

attacker, i.e. the maximum lossible damage under any attack

is bounded by a linear function of the attack size.
Burr, Falk and Karr [Ref. 23] developed a method to

produce globally optimum solutions of integer versions of a

class of problems whose ccrtinuous solutions are of the
Pria-2ead variety. It is assumed that the offense has the

last acve, and the target set consists of T point targets
with values vZ, i = 1,...,T, each protected by its own inde-

pendent terminal defense. 7he defensive zissile has a reli-

ability 9 < 1, and the attacking weapon kilt probability

p- 1.
*-. The expected target value uestroyed can then be given by

T

.-here ai is the number of veapous allocated to target i, and

d- is the nu.cber of missiles assi•ned at target i to be

directed at the jth i.acoming veapou, hoth numbers assuied to

be nonnegative integers. let-ing s denote the upper bound
on the maxisum erpected target damzge per attacker, this
defense prokles can thus be tormtlated as:

min d;

sat~ect to: V4, :S S X Z

* b 0, a; O di ),4 ai Integers
?3r each value of s, the problea a_3 a solution which

can be found by zcl-ing a cclleCtioan of single-Larget prob-
leas, one fcr each targot iAn the target set. The single

10)
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target problem can be formulated as:

min d;

subject to: v (1 - *(1-(1-F)J)1 < sk, k = 1,2,...,

where di is the number of missiles assigned to attacking

weapon J, and v is the value of the single target. It is

shown that for every r = s/y, there exists an optimal solu-

tion .* such that d,* * d, a...
The soluticn to this single-tazget problem can be given

.in the form cf a recursive relation:
2- <_ k < 1/r, a, d= [I ~ ~ ~I-,r,--

with initial condition ,* = [(in r}/iln(1-S)3]

k > 11r, •=O

(Ixl denotes tle smallest integer a x .) The individual

optimal solutions to the single-target problems form the set
of optimal sclutions to the original multi-target problem.

A different algoritha fcz the all-integer version of the
Prix-Read aodel was derived by Burr, which is similar in
nature to the above algorithm, but unlike this method,

always produces monotone delloyaents.
ia the case where both defensive missiles and offensive

weapons are perfectly reliatle, i.e. • = 1, the defender

cau ensure destruction of the attacker by allocating a

sizgle missile to it, and a target will be destroyed the

first time it is left undefended; hence the value of d can

be expressed as

dj= 1, -:j2,.

4 being a aounegative integer representing the number of

weapons agaist which target i will he defended and to which
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it is therefore invulnerable. This simplified problem can

thus be reformulated as:

subject to: Vj, < sZa;.

The unique sclution to this Froblea is given by:

xiv = rMv /s) - 11 , i = 1,2,...,T.

Haaland & Signer ERef. 24] derived optimal defense and

offense strategies using elementary mathematical techniques.

The assumpticns which they sade in their model are that the

weapons and missiles are perfectly reliable, known to the

offense which, as before, has the last move. The damage

function at target i is dencted by f& (al), and represents
the 2aximum dazage inflicted on undefended target i (i.e.

its missile defenses having teen exhausted) by a weapons.

This functicn is assumed to be monotone increasing with
decreasing slcie.

An example of such a function is the square zoot law
*: damage function.

The optimal attack strategy is shown to allocate a

number of weapons a to each target such that the marginal

incrr'se in dazage by the last weapon is equal for all
targets, i.e.

f (a;* 1) - f; (a)j c < f, (a;) - f (a.-1) for all i ,

or igocring integer value considerationse ?f• (aj/@a, c,

where c is a ccastant denoting the marginal increase.

". The critericn for not attacking a particular target j is

given ty the inequality f; (a))/(dj +ai ) < c , where di is the
number of missiles defendinS target J. Hence, the optimal
attack strategy is obtained as follows: an arbitrary value

of c is chosen, and all values of a1  are calculated using

the ejuation 2fi (aj)/,aa1  c. Those targets for which there
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N is no solution to that eguation are disregarded. The
criterion for not attacking a target is then applied to the
remaining targets, and the sum Z(aj +dL) over all those
targets to be attacked is compared with the total offense
stockpile A. If Z(a; +d; A, the procedure is repeated
w with a larger value of c, and if Z(a; +d;) < A, it is
repeated with a saaller value of c. The optimal strategy is

. found when I (ai+d; = c. This tactic has the property that
*' * a larger attack size A does not decrease the number of
- . weapons aimed at a particular target, and would not cause a

target that is attacked at a smaller attack force level to

be bypassed.
"The optimal defense strategy is analogous to the offense

strategy in that missiles are allocated to each target such
that the marginal increase in damage by the last weapon is
egual for all targets. This is determined principally by
their atility tc decrease the effect of an attack in which
not all defended targets are attacked, since if A is much
greater than the defense stockpile D, the offense voull
simply send in weapons to exhaust the defense stockpile D,
and then would allocate tie rest of his weapons over any
targets he wishes, resulting in damages independent of the
defense allocation. The defense strategy is specified as
follows: an arbitrary B is chosen, and the nuster of weapons
allocated to undefended tarset i, 1 is determined using the
equation

f~ sý f1 (aP) < B < f z (a," -f (aý,- 1)

Then the defense allocation d for each target is determined

from the equaticn

.(at)/ (d, • ) = B.

f ff; (ab)/a, - B, d; is set tc 0, i.e. the target j is left
undefended. Then the sum cf the defense allocations are
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compared with the total defense stockpile D. If J d;< D, the

process is repeated with a sialler B, and if 1 d; > D, it is

repeated with a larger B. the optimal defense strategy is

found when I di = D for a certain value of B. This defense
strategy is cftimal when all targets are attacked. A 'tuned

attack' is said to occur if the number of attacking weapons

is just equal to I (d; .•), and in this case, all weapons
will bc aimed at defended targets, and the total damage will

be B T d, aX) B D.

I. SIBITEGSIS I1 1 GABE-THICRCTIC S3UAUTION

Croucher [Ref. 25] uses game theory to analyse the

missile allocation problem. It is assumed that a target i is

attacked by a weapon carrying r; reentry vehicles, and is

defenied by d; xissiles. Given this situation, the prob-

ability that an incosing weapon that is aimed at target i
destroys it can be given by a 'natural' payoff function of

"the following fcrs:

P (r., ad) = (1-exp(-a; r; )ezp(-b;d,) , where ak and b; are

constants repretenting vulnerability factors associated with

target i.

If each target i has a value vi associated with it, then
the total expected target value destroyed is given by

P(r~d 2 vi• (-exp (-al r-)]xp (-bid(1-,

subJect to the constraints .r = 9 (the total offensive

stockpile of reentry vehicles), and d• da D (the total
defetse stockpile). The vectors r and d represent the

offense and defense strategies respectively. The function
P(r., .I;) is ccncave in r- for fixed di and convex in '" for

fixed rz ; conseguently, it can be rroven using the funda-

mental theorem of gases that there exists a pure strategy

solution for the game with the payoff function P(r,4). The
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optimal max-ain strategies r* and g* are derived using Gibbs
leaua to be as follows:

:.•r* =(1/b,3lni+ (p.)/(Aa.)], d =' [1/a;]lnv/(p/a, /

ifr *>O, d>0 , and

= (1/b-.)ln(v;bi/A) if rp >0 and d- 0

The values of h and u are uniquely determined by the equa-

tions:

(1/b; la (r bý /?j) + lail + )ib;/(haj~) 3

and I (1a,)n(,/(ua * b) D

The critericn for attacking or defending a target i is

characterized as follovs:

no offense a•u defense at tazget i: re = L a 0 if v <-h/bj#

no defeuse: rt > 0, de = 0 i f A/b; < vw < C/aai )(Abbj;

both offense and defense:re)>O, d*>O if v, >(ai).i /b+ )

A defense allccation d4* ) 0 implies ze > 0. The total

expected value destroyed when offense and defense are both
using thei optimal strategies is given by the value of the

game

V I /b, * h~-?/t&)

where I, is the index set i such that >4 > 0, d. > O, and Ia

is the index set i such that r, >, d P 0.
In a later paper, Croucher ERef. 263 lerives corre-

- sponding results in the case vhere the damage fuaction is

given ty

P(r ,dj) 1 - exp(-bjr( l1.ajd;,)
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On the condition that R < 2/sax b;, the optimal offense and

defense strategies wre givet by:

"d; - V; bj/7 exp((b;A/(•a•?t) - 1)/a,)j if r1*>O and d*>0,

and r;* = (I/ti )log(v;b;/ ). if n, > 0 and d.* 0

,. Thus the criteria for attacking or defending a partic•i:•f.
target i is characterized by the folloving e~uations:

d = 0 i f v; < A/Vb;

"> 0 ,d- = 0 if )'/b; < v, S (7%/b; /ex 1b; u/(a•A))

.. > 0 ,, 1* > 0 if vi > (A/b;)exp(bA/(ajA)j

The value of A and A is determined by the equations:

b;lcg (W b; A?) * Z. (b, Y/aeA~U/&L=

and , (v ,bi/? xezp(biA/a;A) 1 )/ai = D

The value of tle game V is given by

v = • v[ - ep (-b•ul/(ai))) A £ ,- +bj I

S.
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V. CCCLUSIO!

This thesis has attempted to provide a description cf

the missile aliccation problem and a general survey of the

mathematical investigations, models, and results related to

this problem. Ihe treatments have not included classified
studies, weapcn specific studies cr computer simulation

combat models, and are hence by no means comprehensive. It
is hoped, however, that the reader who is interested in

missile defense and offense either fre. a practical or math-

ematical standpcint would, after reading this thesis, gain a

better appreciation of the range of problems involved in

this field, the successful attempts that have been made in

solving this prcblem, and the areas in which no solutions

"have let been fcund, and which therefore merit the attention

of mathematical analysts cr operations analysts who are

interested in pursuing this field of research.

The general trend has been towards the building of more

realistic and aggregated models of missile offense and

defense. This is especially so in models which represent

national-level strategic exchanges between superpowers (see
for example [Ref. 27] ). However, as the degree of realism

and complexity of these models increase, it is generally
more difficult to obtain analytical sclutions in closed form

or even through the use of iterative searr.h algorithms, and

it seems that ccmputer simulation offers the only hope for a

solution to the problem. However, simulation studies carry

with them the disadvantage that sensitivity analyses and

exploration of alternatives are extremely tedious and time-

consuming because of the large number of variables or param-

eters required to characterize the model. This would
hopeftilly activate researchers to search for more 'elegant'

mathematical sclution methods for these problems.
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